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Abstract: Side-channel attacks provide tools to analyse the degree of resilience of a cryptographic device against adversaries
measuring leakages (e.g. power traces) on the target device executing cryptographic algorithms. In 2002, Chari et al. introduced
template attacks (TA) as the strongest parametric profiled attacks in an information theoretic sense. Few years later, Schindler
et al. proposed stochastic attacks (representing other parametric profiled attacks) as improved attacks (with respect to TA) when
the adversary has information on the data-dependent part of the leakage. Less than ten years later, the machine learning field
provided non-parametric profiled attacks especially useful in high dimensionality contexts. In this study, the authors provide new
contexts in which profiled attacks based on machine learning outperform conventional parametric profiled attacks: when the set
of leakages contains errors or distortions. More precisely, the authors found that (i) profiled attacks based on machine learning
remain effective in a wide range of scenarios, and (ii) TA are more sensitive to distortions and errors in the profiling and
attacking sets.

1 Introduction
Side-channel attacks analyse physical characteristics (called
leakages or traces) of cryptographic devices related to the
execution of the implementation of a cryptographic algorithm. The
physical analysis aims to extract a secret value (also known as the
sensitive information) such as the secret key. The rationale is that
there is a relationship between the manipulated data, the executed
operations and the physical properties observed during the
execution of the cryptographic device. The physical properties that
can be extracted are, for examples, the execution time of a
cryptographic algorithm [1], the electromagnetic emanation [2] or
the power consumption of the device [3]. From an industrial point
of view, side-channel attacks lead to extremely effective and
successful attacks against (certified and uncertified) industrial
products [4–6].

We focus on side-channel attacks based on the power
consumption called Power Analysis (PA) although our analysis can
be applied similarly to other physical properties. Power attacks
were introduced by Kocher and are generally based on two
methods: Simple Power Attacks (SPA) and Differential Power
Attacks (DPA) [1]. SPA recover the target value by searching
patterns in the measured traces. On the other hand, DPA compare
the measured leakages with hypothetical leakages estimated with
guessed target values. DPA are the method of choice when the
traces have a low signal-to-noise ratio and when the cryptographic
algorithm executes the same operation independently of the value
of the secret key. We focus henceforth on DPA.

From a different perspective, side-channel attacks can be
classified into two categories according to the resources available
to the adversary, namely non-profiled and profiled attacks. Non-
profiled attacks (introduced by Kocher et al. [3]) work under the
assumption that the adversary has knowledge on the physical
behaviour of the cryptographic device (e.g. the power consumption
of a device is linearly correlated to the manipulated data). Profiled
attacks, introduced by Fahn et al. [7], extract knowledge (during
the learning phase also known as the profiling phase) about the
physical properties of a target cryptographic device from a similar
device (called profiling device). More precisely, the adversary first
extracts a set of leakages (called a profiling set) from the profiling
device in order to build a model. Afterward, the adversary extracts
the target value from a set of leakages (called an attacking set)

measured on the target device. We focus on profiled attacks
introduced as the strongest leakage analysis in an information
theoretic sense [8].

Conventional profiled attacks family includes template attacks
(TA) [9] and stochastic attacks [10]. In recent years, the
cryptographic community has been exploring the potential of
profiled attacks based on machine learning models [11–19].
According to the previous papers analysing machine learning based
attacks, profiled attacks based on learning models outperform
conventional profiled attacks in high dimensionality contexts.

1.1 Our contributions

Several papers highlighted that the characteristics of leakages vary
across the measured leakages [20–23]. More precisely, real world
datasets often suffer from errors or distortions in the measured
leakages that may affect the efficiency of the adversary. The impact
of these issues on the success of an attack can be reduced with pre-
processing techniques, but cannot be entirely removed [23]. In this
paper, we aim to verify which profiled attack (among conventional
profiled attacks and profiled attacks based on machine learning)
has the lowest sensitivity to modifications of the characteristics of
leakages.

1.2 Organisation of this paper

The rest of the paper is organised as follows. Section 2 contains
notations, background on side-channel attacks as well as the
considered profiled attacks. Section 3 presents our different
scenarios, the target algorithm, the experimental setting as well as
the results of the robustness of profiled attacks. Eventually, Section
4 concludes the paper and discusses perspectives of future work.

2 Background
2.1 Side-channel attacks

In the following, we use the acronym SNR for the signal-to-noise
ratio, and we denote l a leakage measured on a cryptographic
device. Let ly be a leakage measured on a device that manipulates a
target value y (also known as label and class). Let ���  be the jth
measured leakage associated to the target value y. Let ��(�) be the
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tth time sample (also known as a feature) of the leakage trace ly.
This sample represents the interesting point of a leakage. We
consider contexts where each trace ly represents a vector of ns
interesting points (samples), i.e.:�� = �� � ∈ ℝ|� ∈ 1;�� . (1)

The profiling set ℒPS (sometimes denoted as a training set or a
learning set) represents a set of Np (profiling) leakages measured
on a device under control and similar to the target device. This set
of leakages allows during the profiling step to estimate a parameter
θ used in the profiled model (denoted �(ℒAS,�)) that returns,
during the attack step, the most probably target value y based on an
attacking set ℒAS (that contains attack leakages) obtained by
measuring the target device.

Algorithm 1 summarises how a profiled model �( ⋅ , ⋅ ) predicts
the target value with a profiling and an attacking sets.
 
Algorithm 1: How to predict the most likely target value associated
to an attacking set.
Require: A profiling set ℒPS and an attacking set ℒAS
Ensure: The prediction �̂ of a profiled model �( ⋅ , ⋅ )
1. Profiling step:

(a) Implement the crypto algorithm on a controlled device
(similar to the target device)
(b) Collect a set of profiling leakages for each target value on
the controlled device
(c) Estimate the parameter θ with the profiling set (denotedℒPS)

2. Attack step:

(a) Collect a set of attack leakages (denoted ℒAS) on the target
device
(b) �̂ = �(ℒAS, �̂)

2.2 Template attacks (TA)

TA use the profiling set ℒPS in order to estimate a leakage model
per target value y denoted as P̂rmodel �� | �̂�  where �̂� represents
the (estimated) parameters of the leakage probability density
function. During the attack step, TA use an attacking set ℒAS and
select the target value �̂ maximising the product of posterior
probabilities:

�̂ = �(ℒAS, �̂) = argmax� ∏� ∈ ℒAS P̂rmodel � | �̂� ⋅ Pr [�]P̂rmodel[�] , (2)

where �̂ represents the set of parameters. We consider that the
parameter �̂� corresponds to the mean vector �̂� and the covariance
matrix �̂� of the Gaussian (leakage) probability density function
associated to the target value y as proposed by the seminal work of
Chari et al. [8], i.e.:

P̂rmodel � | �̂� = {�̂�, �̂�}= 1(2�)�� det (�̂�)e−(1/2)(�− �̂�)�̂�−1(�− �̂�)⊤, (3)

where det (�̂) denotes the determinant of the matrix �̂. We call
this conventional template attack as classical template attack (CTA)
in the following. Furthermore, we consider the efficient template
attack (ETA) suggested by Choudary et al. [24] in which we pool
the covariance matrices across all the target values. In other words,

ETA estimates one covariance matrix with all the leakages
obtained in the profiling set.

2.3 Support vector machines (SVM)

SVM are the most successful techniques in classification [25]. In a
binary classification setting (e.g. y = 1 or y = −1), if the two classes
are separable, SVM compute from the profiling set a separating
hyperplane �⊤�+ � (where w and b are estimated values) allowing
to estimate the target value �̂ from a leakage l according to the
decision rule:

�̂ = �(�,�) = 1 �⊤�+ � > 0−1 otherwise , (4)

where � = {� ∈ ℝ��, � ∈ ℝ}, and {–1,1} represents the space of
target values.

To reduce the error due to noise in the profiling leakages, SVM
select the hyperplane with the maximal margin, where the margin
is the sum of the distances from the hyperplane to the closest
profiling leakages of each of the two classes. Cortes et al. [25]
show that solving the following convex optimisation problem
allows to select the value of w and b that maximise the margin:

min� 12(�⊤�), (5)

subject to: �(�⊤��� + �) ≥ 1 ∀�,� (6)

in the case of binary labels y ∈ { − 1, 1}.
By introducing Lagrange multipliers (denoted by ��,� ∈ ℝ),

Cortes et al. show that the convex optimisation problem can be
solved with a linear weighted sum of the profiling leakages. As a
result, the decision rule becomes:

�̂ = 1 �⊤�+ � > 0 ⇔ ∑��� ∈ ℒPS��,� × � × ��� ⊤�+ � > 0−1 otherwise (7)

In a compact manner, we write de decision rule as follows:

�̂ = 1 ∑��� ∈ ℒPS��,� × � × � ��� , � + � > 0−1 otherwise , (8)

where ϕ performs the product of two vectors.
An interesting feature of SVM is that it is possible to adapt the

classifier to non-linear classification tasks by performing a non-
linear transformation φ of the leakages, the decision rule becomes:

�̂ = 1 ∑��� ∈ ℒPS��,� × � × � � ��� ,� � + � > 0−1 otherwise (9)

We suppose that �( ⋅ , ⋅ ) (called the kernel function) performs
the transformation � � ⋅ ,� ⋅  leading to the decision rule:

�̂ = 1 ∑��� ∈ ℒPS��,� × � × � ��� , � + � > 0−1 otherwise (10)

Our experiments considered a radial basis kernel function κ
(RBF), which is a commonly encountered solution. The RBF maps
the leakages into an infinite dimensional Hilbert space in order to
find a hyperplane that efficiently discriminates the leakages. RBF
is defined by a meta-parameter γ related to the complexity of the
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model. In our experiments, we set γ equal to 1/ns, which is a natural
choice to compensate the increase of the model complexity due to
the increase of the number of points per leakage.

SVM can be generalised to multi-class problems. In our
experiments, we considered the ‘one-against-all’ approach. In a
one-against-all strategy, the adversary builds one binary support
vector machine for each target value in order to separate leakages
of that target value from leakages of other target values.

2.4 Random forests (RF)

RF represent a set of decision trees (DT). DT are structured as
diagrams made of nodes and directed edges, where nodes can be of
three types: root (i.e. the top node in the tree), internal and leaf. We
consider DT in which (i) the value associated to a leaf is a label,
(ii) each edge is associated to a test on the value of a feature, and
(iii) each internal node has one incoming edge from a node called
the parent node and two outcoming edges to two nodes (called left
child and right child).

In the profiling step, the DT generator first associates the whole
profiling set to the root. Then the generator splits the set associated
to the node in two subsets (called left set and right set) based on a
feature that most effectively discriminates the set of leakages
associated to different target values. Each subset newly created is
associated with a child node: the left set (respectively the right set)
is associated to the left child (respectively the right child). The tree
generator repeats this process on each derived subset in a recursive
manner, until the gain to split the subset is less than some
threshold. Eventually, the learning algorithm assigns to each leaf
the majority class of leakages in that node. The tree construction
may be followed by an additional step called the pruning step in
which the DT is simplified by substituting a single leaf in place of
a whole sub-tree. In the attack step, the model predicts the label by
applying the classification rules (represented by the conditions
along the path from the root to a leaf) to the unlabelled leakage to
classify.

RF were introduced by Breiman in 2001 to address the problem
of instability in large DT, where by instability we denote the
sensitivity of a DT structure to small changes in the profiling set
(also known as the variance issue) [26]. In order to reduce the
variance, RF rely on the principle of models averaging by building
a number of DT and returning the most consensual prediction. This
means that the predicted output �̂ of an attack leakage is calculated
through a majority vote of the set of trees.

RF are based on two aspects. First each tree is constructed with
a different set of profiling leakages through the boostrapping
method. This method builds a profiling set (called a bootstrap
sample) for each DT by sampling with replacement the original
profiling set. Second, each tree is built by adopting a random
partitioning criterion. This idea allows to obtain decorrelated trees,
thus improving the accuracy of the resulting RF. More precisely, in
conventional DT each node is split using the best split among all
features. In the case of RF, each node is split using the best among
a subset of features randomly chosen at that node. In our
experiment, we considered a subset of �� features as suggested by
James et al. [27]. Moreover, unlike conventional DT, the trees of
the RF are fully grown and are not pruned. In other words, each
leaf contains leakages associated to the same target value. This
implies null profiling error but large variance and consequently a
small success rate for each single tree. The average of trees
represents a remedy to the variance issue, and allows the design of
an overall more accurate predictor.

2.5 Multilayer perceptrons (MP)

We use MLP executing basic functions called neurons (also known
as perceptrons) that output values between −1 and 1. A neuron
generates the output value y by executing the composition of two
functions f and g, that is:� = � � �,� , (11)

where x is the input vector, � ⋅  is a non-linear function (called
the activation function), and � ⋅ ,�  is a linear function
(parameterised by θ) allowing to transform a vector of real
numbers to a scalar. Our experiments consider the non-linear
weighted sum function, that is:

� = � �+∑� �(�)�(�) , (12)

where � = [�,�] = [�(0),�(1), …,�], and� = [�(0),�(1), …].
The MLP increase the capacity of a neuron by grouping

neurons in two or more layers. The connection between the ith
neuron and the jth neuron is defined by the weight ��(�) and σj
(where �� = [��(0),��(1), …,��] is the parameter of the jth
neuron). The first, the last and the middle layers are called,
respectively, input, output and hidden layers.

The input of a neuron in a (hidden or output) layer equals to the
weighted output of the neurons associated to the previous layer. In
our experiments, the input layer contains ns neurons (i.e. one input
neuron per feature) while the output layer contains Y neurons
(where Y is the number of possible target values). As a result, based
on one leakage l, each neuron from the input layer (i) manipulates
one point in the leakage l, and (ii) forwards the result of the
manipulation to the next layer. Eventually, each neuron from the
output layer provides a score for each target value associated to the
input leakage l, and the predicted value �̂ represents the target
value having the highest score.

The profiling step adjusts each parameter θj to achieve a desired
output value. For this, the network of neurons uses a supervised
learning technique called the backpropagation algorithm that
minimises for each leakage in the profiling set the difference
between the target value and the generated target value by the
network. For the sake of shortness, we refer to the book of Bishop
[28] for a deeper introduction to multilayer perceptron and to [29]
for a presentation of MLP in PA.

Our experiments use two-layers neural networks containing 200
neurons in the hidden layer and using the sigmoid function as the
non-linear function � ⋅ .

3 Experiments and discussion
3.1 Description of scenarios

We consider a wide range of cases grouped in four scenarios that
are listed in the following:

• Scenario 1: we increase the number of leakages from the
profiling set associated to wrong target values. This scenario can
be the illustration of a problem in the protocol used in order to
build the dataset as already seen in the DPA Contest V4.1.

• Scenario 2: we increase the number of misaligned leakages
(from the profiling set and/or from the attacking set). Each
(temporal) misaligned leakage is randomly time-shifted from 1
to 6 points from the original leakage. This scenario can be due to
a dysfunction in the power supply, an unstable clock, a lack of a
good trigger signal or due to countermeasures such as frequency
changing, voltage changing and random delay interrupts.

• Scenario 3: we increase the level of noise on leakages from the
profiling set and from the attacking set. This scenario represents
a context in which several devices (executed near the
measurement setting) influence the environmental noise.

• Scenario 4: we increase the mean value of the leakages by
adding a constant value (called the DC offset) in the profiling set
and then (as a new case) in the attacking set. The DC offset can
be the result of (i) a difference between the profiling device
(used to build the profiling set) and the target device, or (ii) a
difference between the acquisition campaign during the profiling
and attacking step.

Based on these scenarios, we test the robustness of five (previously
presented) profiled attacks.
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3.2 Target algorithms

DPA Contest represents an international framework that allows
researchers to compare their side-channel attacks under the same
conditions. The contest version 4.1 provides leakages associated to
the execution of an implementation of AES (128-bit key) protected
with a low-entropy Boolean masking scheme called Rotating Sbox
Masking (RSM). We refer to the book of Daemen and Rijmen [30]
for the interested readers on AES, and to the book of Mangard,
Oswald and Popp [31] for an introduction on masking schemes.
Regarding RSM, we refer interested readers to the work of Bhasin
et al. [32].

Few months after the beginning of the DPA Contest V4.1, the
organisers provided an improved implementation of RSM (denoted
as version 4.2) to avoid most of the identified pitfalls in the
previous version. In the following, for the sake of space, we
essentially plot the results based on the DPA Contest V4.2.
Nevertheless, we obtain the same conclusion based on the dataset
provided by the DPA Contest V4.1.

3.3 Description of the testbed

The DPA Contest team used a LeCroy WaveRunner6100A
oscilloscope with an EM probe in order to acquire a set of leakages
from an 8-bit AVR microcontroller Atmega163. Based on the
acquired dataset, we aim to show the sensitivity of profiled attacks
by targeting the secret offset of RSM (having an entropy of 4 bits).
However, our experiments can be generalised to other sensitive
information (e.g. the secret key) and other cryptographic primitives
which represent an interesting future work.

To build our datasets based on the set of leakages provided by
the DPA Contest, we select the features in the traces that (i)
linearly correlate the most with the mask value [Note that an
adversary targeting the offset or the mask value leads to the same
result in our case: the (Pearson) correlation between them equals to
one.], and (ii) are distant each other from at least a certain number
of samples (a number denoted as surroundings in the following).
Note that in the following, we will express the signal-to-noise ratio
in decibels (dB).

In each scenario we vary the number of points per leakage
(from 20 to 100 points per leakage) denoted ns, the number of
leakages in the profiling set (from 500 to 4000 leakages) denoted
Np, and the surroundings parameter (from 0 to 2). However we
provide figures related to the most informative settings for a reason
of simplification and space. We use an attacking set that contains
1000 power traces in order to evaluate the quality of attacks. We
consider the first order succes rate as a metric of comparison
(defined as the probability that the model returns the right mask
value from one attack leakage).

3.4 Scenario 1: experimental results for mistakes

Fig. 1 shows the probability of each profiled attack to return the
target value when varying the percentage of leakages in the
profiling set associated to wrong target values. ETA are the method
of choice when there is no mistake in the profiling set. CTA
provide the worst results overall due to the high number of
parameters to estimate leading to a high sensitivity to errors in the
profiling set. 

It is worth to note that all the methods succeed to have a better
success than a random model (i.e. a success rate higher than 1/16)
even with more than 80% of mistakes in the profiling set. More
precisely, profiled attacks based on machine learning model
outperform conventional profiled attacks in the majority of cases
(and provide similar results in the other cases) when the percentage
of errors is high (especially with the dataset of the DPA Contest
V4.2). For example, based on Fig. 1b, with 80% of mistakes in the
profiling set provided by the DPA Contest V4.2, SVM reach a
success rate of 0.887 while the ETA achieve a success rate of
0.578. The rationale of this result is that (i) the increase of mistakes
is equivalent to a reduction of the number of leakages in the
profiling set leading to be in a high dimensionality context, and (ii)
it has been shown that machine learning based attacks outperform
TA in a high dimensionality context [16, 18].

3.5 Scenario 2: experimental results for misalignments

Misaligned leakages are easier to exploit (compared with mistakes
in the profiling set) since the signal related to target values still
persist for several instants. Fig. 2 shows the success rate of each
model when varying the percentage of misalignments in the
profiling set. ETA still provide the best results when the percentage
of misalignments is low. On the contrary, CTA underperform all
the profiled attacks. Note also that machine learning based attacks
provide a higher success than ETA when increasing the percentage
of misalignments. For example, based on the DPA Contest V4.2
and with 80% percentage of misalignments in the profiling set,
Fig. 2b shows that ETA have a success of 0.32 while SVM, MLP
and RF reach a success rate higher than 0.95. However, an increase
of the surroundings parameter or of the number of points per
leakage allow to increase the success of ETA and, as a result,
reduce the sensitivity of TA to misalignments in the profiling set. 

Fig. 3 shows the results of attacks when leakages from the
attacking set are misaligned. The success rate of each model
decreases with the percentage of misaligned leakages in the
attacking set. Furthermore, the five models perform similarly. 

Fig. 4 shows the results when we vary the percentage of
misaligned leakages in the profiling and attacking sets. Three
observations can be made: (i) CTA have the worst success rate, (ii)
ETA and machine learning models perform similarly on the DPA
Contest V4.1, and (iii) machine learning models outperform ETA
on the majority of cases based on the DPA Contest V4.2.
Regarding the last observation, the success rate of models appears

Fig. 1  Probability to retrieve the target value as a function of the number of mistakes in profiling set for CTA, ETA, SVM, MLP, and RF based on the DPA
Contest V4.2
(a) Np = 500, ns = 50, surroundings = 0 (b) Np = 4000, ns = 50, surroundings = 0
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to be related to the sum of (i) the outcomes based on misalignments
in the profiling set, and (ii) the results based on misalignments in
the attacking set. 

3.6 Scenario 3: experimental results for noise

Our third scenario focuses on an increase of the signal-to-noise
ratio. Fig. 5 plots the outcomes when varying the signal-to-noise
ratio in the profiling set. ETA outperform all the models in low and
high signal-to-noise ratio while CTA underperform all the models
in a high signal-to-noise ratio. 

Fig. 6 shows the results when varying the signal-to-noise ratio
in the attacking set. In a low level of noise, ETA outperform or
have similar results than machine learning based attacks. In a high
level of noise, the models have similar results except SVM that
provide the worst result overall. 

3.7 Scenario 4: experimental results for DC offset

The last scenario analyses a variation between the profiling and the
attacking sets due to a DC offset (i.e. a drift of the global mean of
leakages). In a context with a low DC offset applied to the DPA
Contest V4.1, ETA provide the best results. However, an increase

Fig. 2  Probability to retrieve the target value as a function of the number of misalignments in profiling set for CTA, ETA, SVM, MLP, and RF based on the
DPA Contest V4.2
(a) Np = 500, ns = 50, surroundings = 0 (b) Np = 4000, ns = 50, surroundings = 0

 

Fig. 3  Probability to retrieve the target value as a function of the number of misalignments in attacking set for CTA, ETA, SVM, MLP, and RF based on the
DPA Contest V4.2
(a) Np = 500, ns = 50, surroundings = 0 (b) Np = 4000, ns = 50, surroundings = 0

 

Fig. 4  Probability to retrieve the target value as a function of the number of misalignments in profiling and attacking sets for CTA, ETA, SVM, MLP, and RF
based on the DPA Contest V4.2
(a) Np = 500, ns = 50, surroundings = 0 (b) Np = 4000, ns = 50, surroundings = 0
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of the DC offset in the profiling set leads machine learning models
(especially a model based on MLP) to outperform ETA.

The results of ETA change when considering the DPA Contest
V4.2. Fig. 7 shows the success of attacks when increasing the value
of the DC offset in the profiling set using leakages from the DPA
Contest V4.2. We obtain similar results when varying the DC offset
in the attacking set. ETA reach the best success compared with
other models. Note that this result can be due to the fact that the
amplitude of the leakages from the DPA Contest V4.2 differs from
leakages provided by the DPA Contest V4.1. In other words, these
results highlight that ETA outperform machine learning based
attacks when the DC offset is low. 

3.8 Analysis

Our results are consistent with the no free lunch theorem
explaining that the best model for all scenarios does not exist [33].
Nevertheless, the good results of machine learning algorithms
compared with (efficient) TA can be explained with the bias-
variance theorem recently introduced in the side-channel literature
[34].

The bias-variance framework decomposes the error rate (i.e.
inversely proportional to the success rate) of an attack in three
weighted terms among which the bias and the variance terms. The
values of the variance and the bias relate to the attack complexity:
a strategy with a high variance means a high sensitivity to the

Fig. 5  Probability to retrieve the target value as a function of the SNR (in dB) in profiling set for CTA, ETA, SVM, MLP, and RF based on the DPA Contest
V4.2
(a) Np = 500, ns = 50, surroundings = 0 (b) Np = 4000, ns = 50, surroundings = 0

 

Fig. 6  Probability to retrieve the target value as a function of the SNR (in dB) in attacking set for CTA, ETA, SVM, MLP, and RF based on the DPA Contest
V4.2
(a) Np = 500, ns = 50, surroundings = 0 (b) Np = 4000, ns = 50, surroundings = 0

 

Fig. 7  Probability to retrieve the target value as a function of the DC offset applied on the leakages from the profiling set for CTA, ETA, SVM, MLP, and RF
based on the DPA Contest V4.2
(a) Np = 500, ns = 50, surroundings = 0 (b) Np = 4000, ns = 50, surroundings = 0
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profiling set while an attack with a high bias indicates a high
systematic error compared with the best attack independently of the
size of the profiling set.

The bias-variance decomposition shows that (i) CTA have a
high variance (i.e. a high sensitivity to the profiling set) due to a
high complexity (related to the number of parameters to estimate),
(ii) ETA reduce the complexity of TA by reducing the number of
estimated parameters, and (iii) machine learning models can vary
the variance according to a meta-parameter. For example, SVM
compensate the increase of the model complexity due to the
increase of the number of points per leakage by reducing the
variance term through the modification of the meta-parameter γ. As
a result, the learning models can handle a larger error in the
profiling set (that increases the complexity to learn) while keeping
a lower variance term compared with TA.

4 Conclusion
Our results underline that efficient TA represent the best models
when (i) there is no (or a low) variability in the profiling set and in
the attacking set, and (ii) the level of noise varies between
leakages. Overall, classical TA provide the lowest success to
retrieve the target value. However, profiled attacks based on
machine learning gain interest for evaluators of cryptographic
devices (i) when the number of mistakes (i.e. the number of
leakages incorrectly associated to a target value) in the profiling set
increases, (ii) when the leakages are misaligned in the profiling
and/or attacking sets, and (iii) when the leakages from the profiling
set and from the attacking set differ from a high DC offset. In
summary, our results are of practical importance for evaluators
using tools to analyse the leakages of devices.

Future works include (i) the comparison of the level of
robustness of profiled (e.g. TA and profiled attacks based on
machine learning) and non-profiled attacks (e.g. the recently model
provided by Whitnall et al. [23]), and (ii) the exploration of
profiled attacks based on other learning models having a lower
sensitivity to variation across the leakages.
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