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1 Introduction

Side-channel attacks (Kocher et al., 1999) take
advantage of the fact that information leakage
from a cryptographic device [e.g., instantaneous
power consumption, encryption time (Kocher, 1996),
electromagnetic leaks (Gandolfi et al., 2001; Quisquater
et al., 2001) and acoustic effects (Shamir et al.)] may
depend on the processed data and the performed
operations. This paper focuses on power analysis attacks,
a well-known instance of side-channel attacks, which
assume that the use of different encryption or decryption
keys implies different power consumptions, also referred
to as traces. In particular, these attacks exploit the
dependence between power consumption and a set of
parameters of the cryptographic algorithm, like the
encryption or decryption key, the plaintext or ciphertext,
and the specific implementation. The growing interest
in power attacks derives also from the fact that
measurement technologies make nowadays possible the
collection of a large amount of traces, simply by putting
a resistor in series with the power or ground input.

Side-channel attacks can be categorised in two
classes according to the strategy adopted to recover
the key (Bogdanov et al., 2010): divide-and-conquer
and analytic attacks. The first type of attack recovers
the key one chunk at a time while the latter finds
the entire (sub)key in a single step (e.g., by solving a
system of equations). The analytic strategy is used in
the algebraic (Renauld et al., 2009) and the collision
attacks (Bogdanov, 2007). Here we will focus on a
machine learning approach to implement a divide-and-
conquer attack.

The evolution of the techniques proposed for power
analysis attacks along the years has been characterised
by an increase in the complexity of the statistical
analysis. Simple power analysis (SPA) (Kocher et al.,
1999) has been the first approach proposed in literature
for power analysis. SPA aims to deduce information
about the used key by searching patterns in the trace
linked to the executed operation.

Differential power analysis (DPA) (Kocher et al.,
1999) uses a more advanced statistical technique than
SPA by modelling the theoretic power consumption
for each key. The likelihood of the observed power
consumption for each model is used to predict the key.
The DPA can be resumed as follow. First, it selects a
target, i.e., a function of the cryptographic algorithm
that handles (a part of) the guessed key and a known
value like the plaintext or the ciphertext. Second, it
measures the real leakage during the execution of the
cryptographic algorithm. Then, it makes predictions
about the information leakage based on a leakage model
applied to the target (e.g., Hamming weight of the
target). Eventually, the real and the predicted power
consumption are compared by using metrics, also known
as distinguishers, like the correlation coefficient (Coron
et al., 2004), the difference of means (Kocher et al., 1999)
or the mutual information (Gierlichs et al., 2008). The

rationale is that the likelihood of a key is related to the
degree of similarity between the predicted and the real
power consumption.

The quality of the attack is based on the quality of the
collected power consumption (measured by the signal-
to-noise ratio), the quality of the leakage model and
others parameters. For example, predicting the output
of the first round S-boxes in a block cipher leads to
a better discrimination of the key than predicting its
input (Prouff, 2005).

The template attack (TA) (Chari et al., 2002)
makes another step forward in the use of statistical
modelling for side-channel attacks, by estimating the
conditional probability of the trace for each key in a
parametric manner. This method relies on a parametric
Gaussian estimation approach which appeared to be
effective in practical cases (Mangard et al., 2007). If this
assumption holds, it can be considered as the strongest
side-channel attack in an information theoretic sense.
However, though this parametric approach is simple
and easy to implement, it presents some shortcomings
in configurations characterised by very long traces. For
instance, a parametric Gaussian approach is prone to
ill-conditioning when the number of traces is smaller
than the number of features used to describe the
trace (Schafer et al., 2005).

This paper intends to make an original contribution
in the statistical analysis of power consumption data by
taking advantage of machine learning techniques. For a
detailed introduction to machine learning, we refer the
readers to (Alpaydin, 2009).

The role of machine learning in cryptanalysis has
already been discussed in (Rivest, 1993). An application
of machine learning to cryptanalysis is presented
in (Backes et al., 2010) where a machine learning
algorithm is used to find information about the printed
characters of a printer by exploiting the information
hidden in the acoustic noise. A recent work on the
application of machine learning to power analysis
problem is presented in (Hospodar et al., 2011). In
their paper, the authors analyse a portion of the
AES algorithm based on the XOR between an 8-bit
subkey and the input word, followed by the application
of a SBox. Though Hospodar et al.?s work on the
use of machine learning in side-channel attacks is
innovative, it leaves some space for improvement. First,
they attack a single (and not complete) cryptographic
algorithm by using a specific machine learning model
(i.e., LSSVM). Second, the results do not show any
significant improvement with respect to TAs. Third, the
experimental configuration is characterised by a number
of traces which is large and comparable to number of
time points. It is interesting to study how the machine
learning approach can extend to configurations where
the number of time points is much larger.

Here, we focus on two aspects in order to make
machine learning effective for power consumption
analysis in real settings: the issue of dimensionality
reduction and the one of model selection. The first aims
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to extract from the observed data a minimal number of
features able to take into account the information that
the trace brings about the key. The second aims to go
beyond the parametric assumptions made in TA by using
techniques of model assessment and selection to find in a
non-parametric and data-driven way the technique which
provides the best accuracy in predicting the key.

We will show that a machine learning procedure
based on dimensionality reduction and model selection
is able to outperform conventional TA in high
dimensionality settings by implementing two attacks.
The first attack targets the bytes of the secret key of a
symmetric cipher while the second attack concerns the
bytes of the private key of an asymmetric cipher. We
show that our approach implements attacks significantly
faster than TA when only few traces are available. Then
we will show that in our case the difficulty to predict a
bit does not depend on the cryptographic algorithm but
rather on the cryptographic device. Furthermore, we will
study how the number of traces influences the quality of
the attack in a high dimensionality context.

This paper is organised as follows: Section 2
introduces the notation and reviews the TA approach.
Section 3 presents our machine learning approach to
power analysis attack. A description of the experimental
system and the results of an attack based on a machine
learning technique are described in Section 4. Section 5
concludes the paper and discusses future work.

2 The template attack approach

A TA (Chari et al., 2002) is based on the idea
that the larger the information we have about the
implementation, the more precise is the model of the
device and its power consumptions. This kind of attack
is interesting if only few traces can be obtained from the
attacked device and a clone device for the training step
is available.

Let us consider a crypto device executing a
decryption/encryption algorithm with the binary key
Oi, i ∈ [1;K], where K = 2D is the number of possible
values of the (sub)key and D is the number of bits
(excluding each parity bit). In the following B(b)(i)

represents the i-th bit of the b-th byte of the (sub)key
(see Figure 1) while B(b) represents the b-th byte. In
the context of RSA-512, we have 64 bytes per private
key (i.e. b ∈ [1; 64] ) and 8 bits per byte (i.e. i ∈ [1; 8]).
Note that B(b)(8) (respectively B(b)(1)) represents the
Most Significant Bit (respectively Least Significant Bit)
of each byte.

For each (sub)key, we observe N times the power
consumption of the device over a time interval of length n

and denote by trace the series of observations. Let T
(i)
(j) ={

T
(i)
(j)(t) ∈ < | t ∈ [1;n]

}
be the j-th trace associated to

the i-th key where j ∈ [1;N ].
Template Attack approaches model the stochastic

dependency between the key and a trace by means of a

Figure 1 Representation of a cryptographic key where
B(j)(i) represents the i-th bit of the j-th byte of
the (sub)key.

multivariate normal conditional density
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where µi ∈ <n and Σi ∈ <n×n are respectively the
expected value and the covariance of the n variate traces
associated to the i-th key.

In order to validate the multivariate normal
hypothesis, some tests exist in literature, notably the
kurtosis test (Nordhausen et al., 2008) or the Mardia’s
test (Mardia, 1970). When considering one bit of the
key the Gaussian hypothesis is rejected when at least
one of the set of traces linked to a specific value of
the bit presents no statistical evidence of normality.
The main difference between the two tests is that
the Mardia?s test is based on multivariate estimators
of skewness and kurtosis measures while the kurtosis
test is based essentially on the kurtosis estimation.
Mathematically, the former computes two parameters
(the skewness and the kurtosis measures) following two
distinct distributions (resp. a chi-squared distribution
and a standard normal) under the null hypothesis of
multivariate normality. The latter estimates the kurtosis
following the distribution of a quadratic form in p
standard normal variables which is a linear combination
of p chi-squared distributions with one degree of freedom.

A TA is made of two steps: a training phase (specific
to TA and not present in DPA) and a classification phase.
These phases are also known as learning (or profiling)
and testing (or validation), respectively. During training,
the expected value µi and the covariance Σi of the N
traces (also known as training set) of the i-th key are
estimated by

µ̂i =
1

N

N∑
j=1

T
(i)
(j) (2)

and

Σ̂i =
1

N − 1

N∑
j=1

(T
(i)
(j) − µ̂i)

t(T
(i)
(j) − µ̂i), (3)

respectively.
Once the training is done, the classification allows

to classify traces T observed on a target device but for
which no label is known. This set of traces is also known
as validation set or testing set. The technique returns the
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Figure 2 Decomposition of the prediction problem into a
set of binary classification tasks

key which maximises the likelihood based on the Bayes
theorem

k̂ = arg max
i
P̂ (Oi|T ) (4)

k̂ = arg max
i

P̂ (T |Oi)× P̂ (Oi)

P̂ (T )
(5)

k̂ = arg max
i
P (T |Oi; µ̂i, Σ̂i) (6)

where the apriori probabilities P̂ (Oi) are estimated by
the user.

Because of the Gaussian assumption the number of

parameters to estimate amounts to n2+3n
2 (i.e., n2+n

2
for the covariance and n for the expected value). This
number increases rapidly with the dimensionality and
can become much larger than N for observation intervals
of moderate size (e.g., n > 20). In order to reduce the size
n, techniques of dimensionality reduction are typically
adopted. Their aim is to extract a subset of p informative
variables from the original set of n variables. A discussion
of dimensionality reduction techniques will be provided
in the following section.

3 Our approach

This paper proposes the adoption of a machine learning
approach to estimate from a set of labelled traces the
conditional distribution P (Oi|T ). In order to learn this
dependency from data, we implement a procedure which
relies on three steps: decomposition of the prediction
task into D separate classification tasks, dimensionality
reduction and model selection (Lerman et al., 2011a).
Although this is not the best way to perform a TA, the
decomposition of the problem (Figure 2) is driven by
the need of reducing the complexity of the tasks and
the fact that the most common classification techniques
address multi-input single-output problems. Once each
single classification task is solved, the partial solutions
are combined in order to have a probability distribution
in the space of possible keys. This is known as the divide-
and-conquer approach (Veyrat-Charvillon et al., 2011)
and has been proposed to reduce the average number of
attacked keys.

Dimensionality reduction is necessary in order to deal
with experimental settings where the number n of time

steps is comparable or larger than the number N of
collected traces. At the same time, model selection is
used in order to avoid the parametric assumption made
in TA and find in a data driven manner the model which
best fits the stochastic dependency between key and
power consumption.

3.1 Techniques of dimensionality reduction

Power traces can be represented as multidimensional or
multivariate vectors, where each dimension (or variable)
represents the power consumption of a device at a
specific time during the execution of a cryptographic
algorithm. Since it is possible that only a subset
of variables carry relevant information about the
targeted (sub)keys, dimensionality reduction has to be
considered.

In what follows, after a general overview of
dimensionality reduction we will detail four techniques
which will be used later in our approach.

Overview on dimensionality reduction

Dimensionality reduction (also known as feature
selection) aims to extract from the original n variables
a subset of p informative variables. The advantages of
dimensionality reduction are manifold: speed up of the
learning process and more generally of the recovery of the
key, enhancement of model interpretability, reduction of
the amount of storage and improvement of the quality
of models by mitigating the curse of dimensionality.

The curse of dimensionality is a well known problem
in machine learning due to the fact that by increasing
dimensionality, the sparsity of data increases at an
exponential rate, too. This is a problem when considering
classifiers which have to regroup traces linked to the
same key. In order to address this use, feature selection
is recommended.

Feature selection techniques may be regrouped into
three main categories (Liu et al., 2007): embedded
approaches, filter approaches and wrapper approaches.
In the embedded strategy, the feature selection
is embedded in the classification algorithm. This
means that the best subset of relevant variables
and the parameters of classification models are
searched simultaneously, like in classification trees.
The filter approaches select features before using the
classification algorithm. Finally, wrapper approaches use
the classification models as black boxes to find the best
subset of attributes. In this case, a classifier is learned for
each feature subset in order to associate to each subset
a measure of accuracy. Wrappers usually provide better
results, the price being higher computational complexity.

Ranking

Ranking is the simplest filter technique which returns
the p variables that have the highest variance.

This technique assumes that the degree of
information of a variable is proportional to its variance.
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Obviously, this assumption is extremely simplistic
since no use of information about the target is made
(i.e., it is an unsupervised criterion) and no notion of
complementarity or redundancy of variables is taken
into consideration.

Principal Component Analysis (PCA)

It is probably the most known statistical technique for
dimensionality reduction (Pearson, 1901) and has been
already used for side-channel analysis by (Archambeau
et al., 2006). PCA reduces the number of components of

each trace T
(i)
(j) ∈ <

n by first projecting it into a new set

of n uncorrelated variables, named principal components
and then selecting the p most variant ones. The trace
projected in the new dimension (denoted eigen-trace) is

noted T̃
(i)
(j) ∈ <

n and each of its component is a linear

combination of the n components of T
(i)
(j) .

The rationale of PCA is to rank the new components
according to their variance and to select only a subset
of them, e.g., the first p < n of them. This is due to
the assumption that the components with the highest
variance are the ones with the largest amount of
information.

In algorithmic terms, the eigen-traces T̃ are computed
by means of the n eigenvectors Vi and the n eigenvalues
vi of the covariance matrix of T . In geometric terms, the
n eigenvectors denote the directions of the new space
and the n eigenvalues correspond to the variance of the
n components. By ordering the eigenvalues, it is then
possible to order the new variables and to focus only on
the p most variant.

An interesting feature of PCA is that it is possible to
quantify the loss of information due to the selection of
the first p < n components by using the formula∑n

i=p+1 vi∑n
i=1 vi

(7)

Minimum redundancy maximum relevance
(mRMR) filter algorithm

This filter technique was first proposed in the
bioinformatics literature (Peng et al., 2005) in order to
deal efficiently with configurations where the number of
variables is much larger than the number of samples.
Minimum redundancy maximum relevance (mRMR)
ranks variables by prioritising the ones which have a
low mutual dependence (i.e., low redundancy) while still
providing a large information about the output (i.e.,
large relevance).

The method starts by selecting the variable

r =
{
T

(i)
(j)(t) | i ∈ [1;K] ; j ∈ [1;N ]

}
having the highest

mutual information about the target variable O =
{Oi | i ∈ [1;K]}. Then, given a set R of selected
variables, the criterion updates R by choosing the

variable t =
{
T

(i)
(j)(t) | i ∈ [1;K] ; j ∈ [1;N ] ; t /∈ R

}
that

maximizes I(t;O)− 1
|R|

∑
r∈R I(t; r). This approach

requires a reliable estimation of the mutual information
quantity. In the experiments of this paper, we will make
an assumption of Gaussian distribution of the variables
in order to speed up the computation of the mutual
information.

Self Organizing Map

Self-organising map (SOM) (Kohonen, 2001) is an
artificial neural network which associates each trace with
a neuron and organises the network of neurons in order
to cluster together similar traces.

SOM can also be interpreted as a non-linear mapping
from a high dimensional input to a low dimensional
output since they provide a way to represent data in 2
or 3 dimensions while preserving the mutual distances
between items of the training set.

For a given trace T , the model returns the value Y
which minimises

Y = arg min
j
d(T, πj) (8)

where d is a distance measurement and πj ∈ <n is the
vector describing the j-th neuron.

During the learning procedure, each trace T of the
learning set is used in order to calibrate the vectors πj
according to the following equation:

πj = πj +
ηt(T − πj)
θ(t)(j)(Y )

(9)

where Y is chosen according to (8), ηt is the learning rate
and θ(t)(j)(Y ) represents the distance between the Y -th
neuron and the j-th neuron (when Y is equal to j then
θ(t)(j)(Y ) is set to 1).

The parameter θ(t)(j)(Y ) in (9) increases with the time
(symbolised by t, an iteration number during the training
step) and is used for two main purposes. When its value
is low it allows a global organisation of the map, whereas
when its value increases it lets each neuron tailor those
traces which are most frequently mapped onto it. In
other words, each neuron plays the role of a prototype
of a set of neighbouring traces.

The learning rate ηt, the second parameter of (9), is
set to a high value in the beginning in order to have a
rapid adaptation of all neurons. Then, it is progressively
decreased to allow the neurons to diversify.

In what follows the notation SOM(x× y) will be used
to denote a SOM with x× y neurons (i.e. each neuron
has a coordinate (i; j) such as i ∈ [1;x] and j ∈ [1; y]).

Note that the power of approximation of a SOM is
related to the number of neurons. This means that if on
one hand, having more neurons reduces the bias of the
approximation, on the other it exposes the model to a
higher variance, with a consequent risk of overfitting. In
other words, by increasing the number of neurons we may
obtain better accuracy for the learning set but at the
price of a worse generalisation, i.e., a worse prediction
accuracy on the validation set.
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3.2 Learning machines

In this subsection, after a general introduction to
learning machines, we describe three learning algorithms,
also named classifiers, which we will use in the
experimental session for classifying the power traces. The
aim of a classifier is to learn from observed traces the
unknown (i) relationship between a trace T

(i)
(j) (the input)

and the key Oi (the output).

Overview on learning machines

In a conventional machine learning procedure, feature
selection is followed by a model selection or structural
identification step, which aims to select from a set of
candidate models the best one. During this step, the
family of classifiers (e.g., linear discriminant or neural
networks) as well as the values of the hyper parameters
(e.g., the degree of the polynomial or number of hidden
neurons) are typically set.

This step aims to infer the most appropriate
complexity of the model on the basis of a finite set of
observations. This issue is also known in statistics as the
bias and variance tradeoff where the bias is an indicator
of an excessive simplicity of the model and the variance
measures the instability of the model due to an excess
of complexity. It is indeed well known that if on one
hand too simple models are not able to capture complex
non-linear dependencies (i.e., they underfit) on the other
hand too complex models are sensitive to noise (i.e., they
overfit the data).

The main goal of a model selection step is to
return the model which has the lowest combination
of bias and variance. In order to assess and select
the best model structure, it is therefore necessary to
estimate the accuracy of the model. This demands first
the fitting for each alternative structure of the model
parameters and then the validation of the fitted model
on some independent test set. The fitting step is also
known as parametric identification and takes different
names according to the nature of the model, e.g., least-
squares in linear models, convex optimisation in support
vector machines (SVMs) or backgropagation in neural
networks. The validation step is commonly performed in
machine learning by adopting cross-validation or leave-
one-out strategies (Section 3.3)..

It is well-known in literature that the final accuracy
of the classifier is more sensitive to the structure
selection than to the parameter fitting (Bishop,
1996). For that reason, we focus in this paper on
the model selection procedure. As far as parametric
identification is concerned, we limit our analysis to the
standard implementations available in well-known R
packages [e.g., the SVM implementation in the package
e1071 (Dimitriadou et al., 2011)].

Self Organizing Map (SOM)

SOM, whose unsupervised version has been detailed
previously, can also be used as a supervised

model (Melssen et al., 2006) when the key associated to
each trace of the training set is given. In this paper, we
adopt the bi-directional Kohonen (BDK) map.

A BDK builds two SOMs. The first one, named
Xmap, deals with the input data and is composed of the
vectors π1

i where each vector π1
k is associated to the k-th

neuron in Xmap. The second one, named Ymap, has the
same size of Xmap, deals with the output data and is
composed of the vectors π2

i .
Creating a BDK is done in two steps. During the

first step, each trace in the training set is presented to
the BDK network and the vectors π1

k in the Xmap are
updated. The neuron in Xmap which is closest to a trace
is determined by the Ymap according to the following
equation:

K = arg min
k
d(T, π2

k) (10)

.
In the second updating pass, only the Ymap is

updated object-wise by using the winner determined
by Xmap. Hence, Xmap and Ymap are updated in an
alternating bi-directional way.

For a given trace T , the model returns the output
of a neural Ymap located in the network at the same
position than the one in Xmap which is the nearest to
T .

Support Vector Machine (SVM)

SVM is one of the most successful techniques in
classification (Cortes et al., 1995) and has been recently
used in (Hospodar et al., 2011) for side-channel analysis.
In a binary classification setting, if the two classes
are separable, the SVM algorithm is able to compute
from data the separating hyperplane with the maximal
margin, where the margin is the sum of the distances
from the hyperplane to the closest data points of each of
the two classes. Let the input space be the space of traces
T ∈ <n and the binary target values be O1 = 1 and O2 =
?1. The SVM classification computes the parameters b
and w of the separating hyperplane [wtT + b] by solving
the following convex optimisation problem:

min
w

1

2
(wtw) (11)

subject to

Oi(w
tT

(i)
(j) + b) ≥ 1 ∀i ∈ [1; 2] , j ∈ [1;N ] (12)

. In non separable setting the formulation is changed
by introducing a set of slack variables ξij ≥ 0 with i ∈
[1; 2] , j ∈ [1;N ] then leading to the problem

min
w

1

2
(wtw) + C

2∑
i=1

N∑
j=1

ξij (13)

subject to

Oi(w
tT

(i)
(j) + b) ≥ 1− ξij ∀i ∈ [1; 2] , j ∈ [1;N ] (14)
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C ≥ 0 (15)

ξij ≥ 0 (16)

. A larger C means that a higher penalty to classification
errors is assigned.

An interesting feature of SVM is that it is possible
to adapt the classifier to non-linear classification tasks
by performing a non-linear transformation κ of the
inputs. This function is named kernel function and
can have several forms (e.g., linear, polynomial, radial
basis function, sigmoid). Its purpose is to find a linear
separation in a higher dimension if there is no linear
separation in the initial dimension.

Random Forest (RF)

The random forest (RF) (Breiman et al., 2001) algorithm
was introduced by Breiman in 2001 to address the
problem of instability in large decision trees, where by
instability we denote the sensitivity of a decision tree
structure to small changes in the training set. In other
words, large decision trees prone to high variance, this
resulting in high prediction errors.

In order to reduce the variance, this method relies on
the principle of model averaging by building a number
of decision trees and returning the most consensual
prediction. This means that the predicted key O of an
unlabeled observation T is calculated through a majority
vote of the set of trees.

RF is based on two aspects. First, each tree is
constructed with a different set of traces through the
boostrapping method. This method builds a bootstrap
sample for each decision tree by resampling (with
replacement) the original dataset. Observations in the
original dataset that do not occur in a bootstrap sample
are called out-of-bag observations and are used as a
validation set. Secondly, each tree is built by adopting a
random partitioning criterion. This idea allows to obtain
decorrelated trees, thus improving the accuracy of the
resulting RF model.

In conventional decision trees each node is split using
the best split among all variables. In the case of a RF,
each node is split using the best among a subset of
variables randomly chosen at that node. Also, unlike
conventional decision trees, the trees of the RF are fully
grown and are not pruned. In other words, each node
contains traces linked to a value of the key. This implies
null training error but large variance and consequently
a large test error for each single tree. The averaging of
the single trees represents a remedy to the variance issue
without increasing the bias, and allows the design of an
overall accurate predictor.

3.3 Validation technique

In order to assess the predictive power of our models
and to select the best one, we adopt a leave-one-out
validation strategy. This strategy demands a number N
of rounds. Each round uses N − 1 traces to learn a model

and the remaining trace to assess the generalisation
accuracy that is the accuracy in predicting keys
associated to traces not belonging to the training set.
This is repeated until all traces have been used for
testing purposes. The best model configuration (in terms
of features and learning machine) is the one which
minimises the error computed by leave-one-out.

Note that the aim of the validation is not to perform
an attack but rather to assess robustly the rate of success
of an attack in a statistically equivalent context. When
the attacker wishes to proceed with the attack, she
will take advantage of the results of the validation by
choosing the best model, retraining it on the whole set of
labelled traces and then applying it to classify unlabeled
traces.

4 Experiments and discussion

We carried out two experiments on real power
consumption data. The first one concerns a 3DES
algorithm (Section 4.1) while the second deals with an
RSA-512 algorithm (Section 4.2). Both algorithms run
on the same cryptographic device, an FPGA Xilinx
Spartan XC3s5000 with frequency around 33 MHz.
Section 4.3 discusses the main considerations resulting
from the two experiments. The whole data analysis
procedure is implemented in the R language by means of
the package sideChannelAttack (Lerman et al., 2011b)
available on CRAN.

4.1 Experiments on 3DES

Device under attack

This attack concerns a 3DES algorithm that encrypts a
constant message of 64 bits chosen at random. In our
experiment, triple DES uses three different keys of 56
bits (excluding parity bits) in encrypt-decrypt-encrypt
(EDE) mode.

For the sake of simplicity, we restrict to consider
attacks of a single byte (e.g., 7 non-parity bits) of the
key bundle at the time. This means that we consider a
target value Oi where i ∈ [1; 128].

Note that in the following we will use synthetically
the term key to denote the target of our attack, though,
in fact, we address one byte at the time.

Measurement Setup

For practical reasons, we measured traces with two
oscilloscopes: an Agilent infiniium DSO80204B (2 Ghz
40 GSa/s) and an Agilent infiniium DSO8104A (1 GHz
4 GSa/s) oscilloscope. The first one collects traces of
20, 000 points containing n = 9, 399 values associated
to encryption. The second oscilloscope collects traces of
length 5, 999. Except the last part of experiments on
3DES (i.e., the ’generalisation to the other DES bytes’
part) where the second oscilloscope was used, the other
parts refer to the first oscilloscope.
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3D visualization

Before proceeding with the quantitative analysis,
we reports here a preliminary visualisation of the
distribution of the traces associated to the byte B(8) of
3DES. Since for each value of the key we have N = 400
power consumption traces, we first filter out the noise
by computing for each Oi the average trace value µ̂i ∈
<9399:

µ̂i =
1

400

400∑
j=1

T
(i)
(j) (17)

Then, a preliminary visualisation of the dependence
between µ̂i and Oi is obtained by representing a
projection of the n dimensional traces in a tridimensional
space. In order to visualise the trace distribution, we
use the first three PCA components (V1, V2 and V3

in Figure 3) causing only 25.77% (see (7)) of loss of
information. The seven subfigures of Figure 3 correspond
to seven bits of the B(8) byte (B(8)(1), B(8)(2), B(8)(3),
B(8)(4), B(8)(5), B(8)(6), B(8)(7)). Points with equal
greyscale denote traces associated to keys having the
same bit value. The visualisation suggests that traces,
linked to different values of their lower bits, are less
separable. As a consequence, we should expect that
those bits will be more difficult to predict in this high
dimensionality context.

Model selection

This section assesses and compares several classifier
configurations by using a leave-one-out approach. Note
that, for the sake of coinciseness, we limit here to report
results concerning the byte B(8) of 3DES.

As discussed in Section 3, we build a different
classifier for each non-parity bit of the byte B(8). We
considered three different types of models and four types
of feature selection. In the following, the notation A/B
is used to denote the classifier configuration with the
learner A and feature selection algorithm B.

The assessed configurations in this paper are listed
below:

• SOM(8× 5) / Nosel

• SOM(9× 5) / Nosel

• SOM(8× 6) / Nosel

• SOM(9× 6) / Nosel

• SVM (kernel radial and C = 1) / Rank

• SVM (kernel radial and C = 1) / Nosel

• RF (500 trees) / Rank

• RF (500 trees) / Nosel

• RF (500 trees) / SOM

• RF (500 trees) / PCA

where Nosel means that no dimensionality reduction
is carried out (i.e., 9, 399 dimensions were considered)
while the number of dimensions tested for SVM/rank,
RF/rank, RF/SOM and RF/PCA ranges between 1 and
120. It is worthy to remark here that, again for the sake
of space, we do not report the results of all combinations
of dimensionality reduction and learning techniques. We
prefer to show a reasonable sample of alternatives by
giving priority to the techniques which appeared to be
more accurate, like RF and SVM.

The leave-one-out accuracy percentage for different
learning configurations and the different bits are
reported in Table 1. Note that the accuracy of some bits
amounts to 50%, meaning that for these bits the classifier
accuracy is not better than random.

Table 1 highlights that the most accurate learning
configuration is the one made by a PCA algorithm and a
RF learner in this high dimensionality context. Indeed,
by performing the product of probabilities of bits for
each model (column ?entire byte? in the table), we can
see that RF/PCA obtains the highest score. Therefore,
in the following the RF/PCA learning configuration is
used to attack each key byte of 3DES.

Sensitivity to the number of traces

In the previous sections, we applied an average of 400
traces for each key in order to reduce the noise. In an
attack perspective, it is however important to determine
how much the resulting accuracy is sensitive to the
amount of traces. In order to address this issue, we
attack B(8) of 3DES by means of RF/PCA and restrict
the number of traces per key to 50, 150, 250, 400,
respectively. The success rate (between 0% and 100%)
is returned by the product of the success rates of each
attacked bit and is shown in Figure 4 as a function of
the number of features.

Two considerations can be made on the basis of
this analysis. First, as expected, the higher the number
of traces per key, the higher the signal-to-noise ratio
and the associated accuracy. Second, by reducing the
number of traces, the dimensonality reduction procedure
avoids the risk of overfitting by reducing accordingly the
number of selected features. For such number of features,
in spite of a drastic reduction of the number of traces
(from 400 down to 50) the RF/PCA returns a reasonably
accurate performance in this high dimensionality setting.

Comparison between Machine Learning and
Template Attack

In this section, we compare the accuracy of the RF/PCA
model to the one of TA. For that reason, we carry out a
set of attacks against a byte of the key under the same
conditions. This means that the following parameters are
identical for both attack strategies:

1. the oscilloscope

2. the device
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Figure 3 This figure shows the 128 traces, from the 8-th byte of the first key (B(8)) of 3DES, projected in 3D. The black
dots represent a bit value 1 and the others symbolize a bit value 0. Points of the same grayscale indicate the same
value of the 7-th bit (B(8)(7)) in A, of the 6-th bit (B(8)(6)) in B, of the 5-th bit (B(8)(5)) in C, of the 4-th bit
(B(8)(4)) in D, of the 3-rd bit (B(8)(3)) in E, of the 2-nd bit (B(8)(2)) in F, and of the 1-st bit (B(8)(1)) in G.

7-th bit 6-th bit 5-th bit 4-th bit 3-rd bit 2-nd bit 1-st bit Dim entire byte

SOM(8× 5) 96.09 90.23 87.50 74.22 53.52 50.00 50.00 9399 7.53
SOM(9× 5) 97.27 92.19 83.98 69.53 57.81 51.17 50.00 9399 7.74

SOM(8× 6) 96.48 89.45 83.59 73.44 57.42 50.00 50.00 9399 7.61

SOM(9× 6) 95.70 92.97 85.94 78.52 58.20 51.56 50.00 9399 9.01

SVM / Rank 94.53 80.47 72.66 62.5 50.00 50.78 50.00 20 4.39

SVM / Nosel 96.48 90.23 82.81 73.05 64.06 53.52 50.00 9399 9.03

RF / Rank 97.66 83.98 81.64 77.34 61.33 57.42 50.00 20 9.12

RF / Nosel 96.09 92.58 89.06 83.98 59.77 55.47 50.00 9399 11.03

RF / SOM 96.48 89.06 82.81 76.17 60.94 50.00 50.00 20 8.26

RF / PCA 96.09 92.58 90.63 85.55 75.39 58.98 50.00 14 15.33

Table 1 The leave-one-out accuracy percentage for different learning configurations and the different bits. “Dim” denotes
the number of selected variables while the “entire byte” denotes the probability to predict the entire byte correctly.
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Figure 4 Leave-one-out success rate for 3DES obtained
with RF/PCA with different number of traces
N ∈ {50, 150, 250, 400}.

3. the implemented encryption scheme

4. the probes

5. the number of traces (400)

6. the measured traces

7. the attacked byte (the byte B(8) of 3DES)

8. the validation technique (leave-one-out)

Note that we limited our analysis to consider the byte
B(8) since for that specific byte we have traces measured
with the most accurate oscilloscope.

The comparison is done in terms of success rate (the
higher the better).

We reduced the number of points for each
trace through a feature selection method. The large
dimensionality of the traces requires the adoption of
a dimensionality reduction technique during the TA?s
training step. For the sake of comparison we considered
here PCA, the mRMR filter and the sum of squared
pairwise T-differences (SOST) filter (Gierlichs et al.,
2006).

The accuracy of the TA/mRMR attack as a function
of the number of features is reported in Figure 5, the
accuracy of the TA/PCA attack is shown in Figure 6
and the accuracy of the TA/SOST attack is summarised
in Figure 7.

It is interesting to remark that the TA is not reliable
at all when the number of features goes beyond a certain
size (see Figure 5). This is presumably due to the ill-
conditioning of the covariance matrix when the number
of features is too large. The adoption of a regularised
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Figure 5 3DES: rate of correct classification vs. number
of variables with TA/mRMR.
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Figure 6 3DES: rate of correct classification vs. number
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Figure 7 3DES: rate of correct classification of the byte
vs. number of variables with shrinked TA / SOST.

approach [shrinkage estimation (Schafer et al., 2005))]
for computing the covariance makes possible the use of a
larger number of variables though this has no remarkable
effects in terms of accuracy (see Figure 6, Figure 7 and
Figure 8).

The rate of correct predictions is indeed below the
rate of RF/PCA as indicated by the Table 2 showing
the percentage of correct classification in the case of 35
variables with TA/mRMR.

The empirical comparison between TA and machine
learning models supports the idea that the normal
hypothesis is not necessary. In order to validate
these empirical comparisons we performed two classical
multivariate normality tests with a significance level of
5%: the Kurtosis (Nordhausen et al., 2008) and the
Mardia’s test (Mardia, 1970).

In agreement with our results, Mardia?s test and
the multivariate normality based on kurtosis rejected
the hypothesis of Gaussianity in all multivariate
configurations with a number of dimensions ranging
between 2 and 40 (selected by mRMR, SOST and PCA).
Box plots are available in Appendix A for the Mardia?s
test and in Appendix B for the multivariate normality
based on kurtosis. Each box plot visualises for all the bits
the distribution of p-values for the different dimensions.

Generalization to the other DES bytes

In this section, we generalise the attack discussed so
far to all the 24 bytes of the DES key bundle. As this
section focuses on other bytes, the results below should
not be compared with previous ones. For each byte of
the key bundle, N = 400 traces are collected for each

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●
●
●●

●●
●
●

●●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●●

●

●
●

●●
●
●

●

●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

3.
0

number of features

su
cc

es
 r

at
e 

(%
)

Figure 8 3DES: rate of correct classification of the byte
vs. number of variables with shrinked TA/mRMR.

of the 128 possible instances. After the preprocessing
step, the RF/PCA is used to predict the bits. The
prediction accuracy results computed by leave-one-out
are summarised in Table 3 for the first key (i.e.,
B(1), B(2), ..., B(8)), in Table 4 for the second key (i.e.,
B(9), B(10), ..., B(16)) and in Table 5 for the last key of
3DES (i.e., B(17), B(18), ..., B(24)).

As previously mentioned, the dimensionality
reduction procedure for RF/PCA selects the optimal
number (between 1 and 120) of dimensions on the basis
of the product of probabilities of a correct classification.

These results confirm the output of the visualisation
phase since on average the last bits of the byte appear
to be the most predictable in our high dimensionality
context. For instance, the prediction error for B(1)(7) is
lower than the one for B(1)(1). Moreover, on average,
the number of variables to consider is about 31 with a
standard deviation of 17.38.

From prediction to the attack

The prediction results obtained in the previous section
encourage the definition of an attack strategy that we
will denote as key search strategy. The rationale of
the strategy is the following: we start by running the
RF/PCA model to predict the encryption key. In the
case the key is not correctly predicted, we invert the
value of the most difficult bit to predict. If the key is still
incorrect we proceed by flipping the value of the second
most difficult bit and so on.

Let us consider the following example. Suppose we
need to predict a key of 8 bits and that our model
predicted the value 0011 1101. Suppose that the least
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7-th bit 6-th bit 5-th bit 4-th bit 3-rd bit 2-nd bit 1-st bit entire byte

94.53 78.13 78.13 67.19 53.13 55.47 50.78 5.80

Table 2 Rate of correct classification results in the case of 35 variables with TA/mRMR computed by leave-one-out against
a byte of 3DES. The entire byte denotes the probability to predict the entire byte correctly.

7-th bit 6-th bit 5-th bit 4-th bit 3-rd bit 2-nd bit 1-st bit Dim entire byte

1-st byte 78.13 65.63 77.34 60.16 60.16 53.13 50.00 61 3.81

2-nd byte 85.16 75.00 67.97 50.00 57.03 50.00 50.00 17 3.09

3-rd byte 78.91 67.97 70.31 69.53 67.97 50.00 51.56 44 4.59

4-th byte 85.16 73.44 60.94 57.81 50.00 50.00 54.69 25 3.01

5-th byte 89.84 78.91 65.63 60.16 64.84 52.34 50.00 28 4.75

6-th byte 82.03 73.44 60.16 59.38 50.78 54.69 60.94 40 3.64

7-th byte 69.53 67.19 61.72 50.78 54.69 50.00 50.00 24 2

8-th byte 78.91 72.66 56.25 50.00 53.91 50.00 50.00 39 2.17

Table 3 Rate of correct classification results of RF/PCA computed by leave-one-out for the first key. Dim denotes the
number of selected variables while the entire byte denotes the probability to predict the entire byte correctly.

7-th bit 6-th bit 5-th bit 4-th bit 3-rd bit 2-nd bit 1-st bit Dim entire byte

1-st byte 95.31 67.19 70.31 59.38 53.91 55.47 50.00 18 4

2-nd byte 78.13 75.00 67.19 59.38 50.00 50.00 57.03 51 3.33

3-rd byte 97.66 85.94 65.63 57.81 50.00 50.00 50.00 28 3.98

4-th byte 93.75 84.38 63.28 52.34 57.03 52.34 50.00 41 3.91

5-th byte 92.19 82.81 67.97 63.28 50.00 62.50 50.00 43 5.13

6-th byte 75.00 71.88 64.06 65.63 50.00 50.00 54.69 68 3.10

7-th byte 90.63 69.53 70.31 61.72 56.25 51.56 50.00 2 3.97

8-th byte 91.41 83.59 82.81 67.19 64.84 50.00 50.00 32 6.89

Table 4 Rate of correct classification results of RF/PCA computed by leave-one-out for the second key. Dim denotes the
number of selected variables while the entire byte denotes the probability to predict the entire byte correctly.

7-th bit 6-th bit 5-th bit 4-th bit 3-rd bit 2-nd bit 1-st bit Dim entire byte

1-st byte 89.84 74.22 62.50 54.69 60.94 50.00 54.69 23 3.80

2-nd byte 96.09 82.81 64.06 60.16 65.63 50.00 50.00 31 5.03

3-rd byte 95.31 84.38 76.56 54.69 60.94 50.00 50.00 17 5.13

4-th byte 84.38 74.22 68.75 64.06 57.03 50.00 50.00 6 3.93

5-th byte 93.75 81.25 60.94 54.69 57.81 50.00 50.00 16 3.67

6-th byte 90.63 89.84 72.66 68.75 60.16 50.00 50.00 56 6.12

7-th byte 96.88 87.50 64.06 61.72 61.72 50.00 50.00 30 5.17

8-th byte 71.09 66.41 64.06 65.63 50.00 60.94 50.00 5 3.02

Table 5 Rate of correct classification results of RF/PCA computed by leave-one-out for the third key. Dim denotes the
number of selected variables while the entire byte denotes the probability to predict the entire byte correctly.



Power analysis attack: an approach based on machine learning 13

significant bits are less predictable than the remaining
ones. If the model did not return the correct key, we
complement the least significant bit. Then we proceed
by testing the following keys: 0011 1101, then 0011 1100,
then 0011 1111, then 0011 1110, then 0011 1001, ....

4.2 Experiments on RSA

The aim of this section is to assess the robustness of
the machine learning approach by applying it to another
encryption scheme: the RSA-512 asymmetric algorithm.

Device under attack

We consider an instance of the RSA-512 algorithm
that decrypts a constant message of 256 bits chosen at
random and encrypted beforehand. Note that RSA-512 is
used here as a decryption algorithm with a private key of
512 bits (64 bytes) though it is also known as a signature
algorithm. Note that 512-bit RSA keys are not longer
considered secure (Cavallar et al., 2000). Nevertheless,
the attack can be generalised to a larger RSA key.

For our purposes, we consider the RSA
implementation based on the left-to-right m-ary
exponentiation algorithm (Knuth, 1981) where m = 4.

As for 3DES, our target value is not the whole 512
bit private key but Oi where i ∈ [1; 256] (i.e., a byte of
the key).

Measurement Setup

Trace measures are performed with the Agilent infiniium
DSO8104A 1GHz 4GSa/s oscilloscope. This device

allowed to collect traces T
(i)
(j) of length n = 5, 999

corresponding to the decryption phase of RSA.

Model selection

This new context led us to perform a new model
selection. As for 3DES, we collected a set of 400
traces per key and we used them to select the best
model to attack two bytes of the private key. In this
case, the model selection step returned the RF/mRMR
configuration whose results are shown in Table 6.

Analogously to what was observed during the 3DES
experiment, we remark that the initial RSA bits are
more difficult to predict than the other ones. This result
suggests that the lack of predictability at the bit level
could depend on the cryptographic device rather than
on the algorithm.

Comparison between Machine Learning and
Template Attack

The last part of the RSA experiment compares the
accuracy of the RF/mRMR models to the TA. As for
the 3DES case, the two types of attacks used the same
dataset of 400 traces per key collected by varying the
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Figure 9 RSA: rate of correct classification vs. number of
variables with shrinked TA/mRMR.

last byte of the key. The comparison was performed on
the basis of the success rate estimated by leave-one-out.

As for 3DES, we reduced the number of points for
each trace through three feature selection techniques
during the training step (i.e., PCA, the mRMR filter and
the SOST filter).

The accuracy of the attack as a function of the
number of features is reported for TA/mRMR in
Figure 9, for TA/PCA in Figure 10 and for TA/SOST in
Figure 11. Note that in all case the rates of TA correct
predictions are lower than the RF/mRMR rate in this
high dimensionality context.

A possible justification of the superiority of the
machine learning approach derives from the results of
the two normality tests (kurtosis and Mardia) that we
carried out on the last byte of RSA. Except one single
case, the Mardia?s and the kurtosis tests rejected (pval
= 0.05) the parametric hypothesis of normality for all
dimensions from 2 to 40. The related box plots of p-
value distributions are available in Appendix C for the
Mardia?s test and in Appendix D for the kurtosis test.

4.3 Discussion

The experimental results of the previous sections suggest
some considerations. The major one concerns accuracy
since the experimental results show that for both
3DES and RSA-512, machine learning improves the
accuracy of the power analysis attack with respect
to conventional TA in high dimensionality settings. In
quantitative terms, the use of machine learning increases
the probability of recovering a byte of the key from
5.80% to 15.33% in the case of 3DES and from 2.14%
to 2.79% in the case of RSA-512. The most probable



14 L. Lerman, G. Bontempi and O. Markowitch.

8-th bit 7-th bit 6-th bit 5-th bit 4-th bit 3-rd bit 2-nd bit 1-st bit Dim entire byte

last byte 78.13 78.91 83.98 84.77 50 50 50.78 50 16 2.79

32-th byte 71.09 68.75 76.17 76.56 54.30 63.28 56.25 58.59 5 2.23

Table 6 Rate of correct classification results of RF/mRMR computed by leave-one-out for the first key of RSA. Dim denotes
the number of selected variables while the entire byte denotes the probability to predict the entire byte correctly.
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Figure 10 RSA: rate of correct classification vs. number
of variables with shrinked TA/PCA.
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Figure 11 RSA: rate of correct classification vs. number
of variables with shrinked TA/SOST.

justification is related to the TA parametric assumption.
As our multivariate normality tests showed, the Normal
hypothesis is in the majority of cases not supported by
the empirical data.

The added value of a machine learning approach can
be quantified by the adoption of an alternative accuracy
measure: the guessing entropy measure. According
to (Kopf et al., 2007), ”the guessing entropy of a random
variable X is the average number of questions of the
kind ”does X = x hold” that must be asked to guess
X’s value correctly”. Mathematically, they define the
guessing entropy as:

G =
∑

1≤i≤|χ|

(iP (xi)) (18)

where χ is the state space of X and P (xi) ≥ P (xj) ∀i ≤
j. In other words, this term quantifies the difficulty of
guessing the value of a key by returning the number of
guesses needed on average before finding the right key
with the key search strategy.

Suppose that the possible values of the key are sorted
with decreasing probability as shown in Section 4.1 (O[1],
O[2], . . . , O[K]) where O[1] denotes the most predictable
key. The guessing entropy is defined as:

G =

K∑
k=1

(kP (O[k])) (19)

where P (O[k]) is the probability the k-th value of the key
is the correct one.

If we measure the accuracy of the strategy in terms
of guessing entropy, we obtain that in the case of 3DES
(resp. RSA) on average the key search strategy needs 11
(resp. 49) tests to recover a byte of the key while the TA
requires 21 (resp. 78) of them.

A second interesting conclusion concerns the
heterogenous performance in predicting the bits of the
key. Our results suggest that this is not caused by the
algorithm but rather by the cryptographic device. At this
stage, though additional study should be conducted, we
could guess that the reason is related to the fact that
the device manages each bit of each byte of the key in a
similar way.

A third consideration concerns the adoption of
feature selection and in particular the fact that
not only feature selection improves the accuracy
(as in (Archambeau et al., 2006)) but also helps
the interpretation. In particular, their use helps
understanding which part of the trace is the most
informative about the key. For instance, we could be
interested in testing whether there is any important
information outside the period of encryption or
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decryption. The mRMR results suggest that there is a
certain amount of information also outside the interval.
A possible explanation could be that the private and the
secret key are sent unencrypted to the FPGA before each
encryption and decryption.

The last remark concerns the adoption of a Gaussian
estimator of mutual information in mRMR in site
of the fact that data do not follow a Gaussian
distribution. Our approach relies on feature selection
to reduce the excessive variance due to the huge large
number of variables. Now, according to the bias/variance
decomposition, the use of a biased estimator (like in
regularisation) is recommended in feature selection to
reduce variance. This is the reason why the adoption of
a Gaussian assumption in mRMR leads anyway to an
improvement of the resulting performance.

5 Conclusion

We presented and assessed a machine learning approach,
based on non-parametric techniques, able to infer from
power consumption observations a model which predicts
the bits of a 3DES secret key and the bits of an
RSA-512 private key. The availability of an increasing
amount of observations about the physical behaviour of
a cryptosystem makes machine learning algorithms an
important component of an attack strategy.

This paper relies on a large number of experimental
comparisons to support the use of a machine learning
approach. Some questions remain however unanswered,
e.g., why some model configurations perform better than
others and if these results may be generalised to other
attacks.

About the interpretability issue, it is important to
remark that machine learning provides a methodology
to train black-box tools in order to predict accurately
the keys of the algorithm. Given its black-box nature
it is not easy to deduce why an algorithm works better
than another. In any case if the interpretation of the
model is considered as more valuable than the accuracy
of the results then other models and more white-box
approaches should be pursued.

About the generalisation ability, we deem that our
validation procedure provides an honest estimation
of how the prediction algorithms could behave with
new data coming from similar problems (in terms
of attack algorithms, number of traces and nature
of the hardware). At this stage, it is not possible
to extrapolate to contexts characterised by different
types of signal, dimensionality and noise. We do not
claim as a consequence that the proposed learning
architecture is the universally best one for SCA tasks
since, as formalised by the no-free-lunch theorem, no
statistical modelling algorithms can be entitled to be
the universally best one. At the same time, we think
that our results, based on a large amount of real data,
support the idea that non-parametric and dimensionality
reduction techniques can be competitive and sometimes

better than state-of-the-art approaches when simplistic
assumptions do not hold and a high dimensionality
context is taken into consideration. It is also worthy to
add a word of caution about the generalisation of our
results to very large datasets. We considered on purpose
a practical side channel attack setting where only a few
traces are available. As a consequence, all the results
have to be considered in a high dimensionality context
and all techniques analysed would perform differently if
more traces in the training set were available.

Future work will focus on the generalisation of
these preliminary results to other datasets and other
classification tasks: first by considering larger portions
of the key, second by assessing the impact of the coded
message on the prediction accuracy and by varying
the cryptographic device. Furthermore, a modified
cryptographic algorithm implementation that indexes
bits in reverse order will be analysed in order to validate
the results of bit leaking order.

Interesting future research perspectives concern the
research of alternative values for the parameters of
machine learning algorithms, the adoption of multiclass
classification (Fürnkranz, 2002) to extend the results
of the binary models in side-channel attacks, the
adaptation of specific learning techniques for the
classification of time series (Caiado, 2010) and the fusion
of different measurements as discussed in Agrawal et al.
(2003).
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Appendix A: Mardia’s test for 3DES

Each box plot summarises the p-values of Mardia’s tests
for a specific bit of 3DES by taking into account from 2
to 40 dimensions selected by a feature selection.

In each box plot, the central bar corresponds to
the median, the hinges to the first and third quartiles,
and the whisker represents the greatest/lowest value
excluding outliers. A p-value is considered as an outlier
when its value is more than 3

2 times of upper/lower
quartile.
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Figure 12 Mardia’s test for 3DES/mRMR: p-values vs
bit numbers.
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Figure 13 Mardia’s test for 3DES/PCA: p-values vs bit
numbers.
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Figure 14 Mardia’s test for 3DES/SOST: p-values vs bit
numbers.

Appendix B: Multivariate normality test
based on Kurtosis for 3DES

Each box plot summarises the p-values of multivariate
normality tests based on Kurtosis for a specific bit of
3DES by taking into account from 2 to 40 dimensions
selected by a feature selection.
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Figure 15 Multivariate normality test based on Kurtosis
for 3DES/mRMR: p-values vs bit numbers.
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Figure 16 Multivariate normality test based on Kurtosis
for 3DES/PCA: p-values vs bit numbers.
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Figure 17 Multivariate normality test based on Kurtosis
for 3DES/SOST: p-values vs bit numbers.

Appendix C: Mardia’s test for RSA-512

Each box plot summarises the p-values of Mardia’s tests
for a specific bit of RSA-512 by taking into account from
2 to 40 dimensions selected by a feature selection.
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Figure 18 Mardia’s test for RSA/mRMR: p-values vs bit
numbers.
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Figure 19 Mardia’s test for RSA/PCA: p-values vs bit
numbers.
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Figure 20 Mardia’s test for RSA/SOST: p-values vs bit
numbers.

Appendix D: Multivariate normality test
based on Kurtosis for RSA-512

Each box plot summarises the p-values of multivariate
normality tests based on Kurtosis for a specific bit of
RSA-512 by taking into account from 2 to 40 dimensions
selected by a feature selection.
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Figure 21 Multivariate normality test based on Kurtosis
for RSA/mRMR: p-values vs bit numbers.
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Figure 22 Multivariate normality test based on Kurtosis
for RSA/PCA: p-values vs bit numbers.
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Figure 23 Multivariate normality test based on Kurtosis
for RSA/SOST: p-values vs bit numbers.


