
J Cryptogr Eng (2015) 5:123–139
DOI 10.1007/s13389-014-0089-3

REGULAR PAPER

A machine learning approach against a masked AES
Reaching the limit of side-channel attacks with a learning model

Liran Lerman · Gianluca Bontempi · Olivier Markowitch

Received: 13 February 2014 / Accepted: 12 October 2014 / Published online: 4 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Side-channel attacks challenge the security of
cryptographic devices.Awidespread countermeasure against
these attacks is the masking approach. Masking combines
sensitive variables with secret random values to reduce its
leakage. In 2012, Nassar et al. (DATE, pp 1173–1178. IEEE,
2012) presented a new lightweight (low-cost) boolean mask-
ing countermeasure to protect the implementation of the
Advanced Encryption Standard (AES) block-cipher. This
masking scheme represents the target algorithm of the DPA-
ContestV4 (http://www.dpacontest.org/home/, 2013). In this
paper, we present the first machine learning attack against a
specific masking countermeasure (more precisely the low-
entropy boolean masking countermeasure of Nassar et al.),
using the dataset of the DPAContest V4. We succeeded to
extract each targeted byte of the key of the masked AES with
7.8 traces during the attacking phase with a strategy based
solely on machine learning models. Finally, we compared
our proposal with (1) a stochastic attack, (2) a strategy based
on template attack and (3) a multivariate regression attack.
We show that an attack based on a machine learning model
reduces significantly the number of traces required during
the attacking step compared to these profiling attacks when
analyzing the same leakage information.

Keywords Side-channel attack · Masking · Profiled
attack · Machine learning · Stochastic attack · Template
attack

L. Lerman (B) · O. Markowitch
Quality and Security of Information Systems, Département
d’informatique, Université Libre de Bruxelles, Brussels, Belgium
e-mail: llerman@ulb.ac.be

L. Lerman · G. Bontempi
Machine Learning Group, Département d’informatique,
Université Libre de Bruxelles, Brussels, Belgium

1 Introduction

Embedded devices such as smart cards, mobile phones, and
RFID tags are widely used in our everyday lives. These
devices implement cryptographic operations allowing to
secure, for example, bank transfers, buildings and cars. Sev-
eral cryptographic primitives exist such as hash functions
and encryption functions. During the execution of an encryp-
tion algorithm, the device processes secret information. Such
secret information could be retrieved with physical attacks
against the physical device by analyzing unintentional leak-
ages that appear in power consumption [26], processing time
[25], electromagnetic emanation [14] or in a combination of
them [47].

Two main families of attacks against cryptographic
devices exist: non-profiled and profiled attacks. Non-profiled
attacks are one-phase strategy that perform the key recovery
step directly on the target device. Profiled attacks are two-
phase strategies that (1) characterize the leakage value of the
target device on the basis of a key-related information using a
clone device (similar to the target device) and then (2) attack
the target device.

In 1999, Kocher et al. [26] proposed a non-profiled dif-
ferential power analysis (DPA) on power consumption data
(called traces). This method models the theoretic leakage for
each secret information. Then the real and the predicted leak-
age are compared using metrics, also known as distinguish-
ers, like the correlation coefficient (CPA) [6], the difference
of means (DoM) [26], the mutual information (MIA) [15],
or the Kolmogorov–Smirnov test (KS) [52]. The rationale is
that the likelihood of a secret information is related to the
degree of similarity between the predicted and the real leak-
age information.

Profiled attacks, like template attack (TA) [5] and stochas-
tic attack (SA) [46], make a step forward in the use of sta-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-014-0089-3&domain=pdf
http://www.dpacontest.org/home/

124 J Cryptogr Eng (2015) 5:123–139

tistical modeling of leakages; they estimate the conditional
density function of the trace for each key-related information
by creating a Gaussian parametric model during a profiling
step. Thereafter, during the attacking phase, the traces are
classified by a maximum likelihood approach. We refer to
[51] for a recent comparison between template attack and
stochastic attack. If the assumption of Gaussianity holds and
sufficient data exist for accurate estimation of the parameters,
Template Attack can be considered as the strongest leakage
analysis in an information theoretic sense [5]. Profiled attack
is particularly suitable (1) to analyze the security of a cryp-
tographic device in the worst case scenario and (2) when the
adversary is only able to observe a single use of the key (e.g.
in stream ciphers) or a secret one time value (e.g. a mask in
a masking scheme).

In recent years, the cryptographic community explored
new approaches based onmachine learning. The results show
that template attacks overestimate the security of embed-
ded devices in several scenarios. Lerman et al. [27,28]
compared a template attack with a binary machine learn-
ing approach, based on non-parametric methods, against
cryptographic hardware devices implementing a symmet-
ric and an asymmetric cryptographic algorithm. Hospodar
et al. [22,23] analyzed a software implementation of a por-
tion of a block-cipher. Their experiments support the idea
that non-parametric techniques can be competitive and some-
times better (i.e. less traces in the attacking phase) than
template attack. Heuser et al. [21] generalized this idea by
analyzing multi-class classification models in several con-
texts. In the same year, Bartkewitz [2] applied a multi-class
machine learning model allowing to improve the attack suc-
cess with respect to the binary approach. Recently, Lerman
et al. [29] proposed a machine learning approach that takes
into account the temporal dependencies between power val-
ues. This approach improves the success rate of an attack in a
low signal-to-noise ratio with respect to classification meth-
ods. At the same time, Martinasek et al. [35] applied a neural
network to extract one byte of the key of AES. Their method
retrieves the secret value with probability around 0.9 using a
single measured power leakage.

Together with attacks, the embedded systems industry
needs countermeasures. Side-channel attacks may be coun-
teracted by inducing a leakage independent of the secret tar-
get value. It is worth to mention that all the previously pre-
sented attacks based on machine learning were applied on
unprotected cryptographic devices. Recently, Lerman et al.
[30] investigated whether the results of the previous works
would be still the same in a protected environment. During
the attacking phase, for a specific countermeasure and for
a specific device, their investigations concerned: (1) How
many traces are required against a protected device with a
machine learning model compared to a strategy based on
template attack or on stochastic attack (2) How many traces

are required by a machine learning model attacking a pro-
tected device compared to an unprotected device (3) What is
the impact of the number of traces used in the profiling step by
amachine learningmodel when attacking a protected device.

The results presented in this paper extend the previous
analyses in two main directions. We first focus on how to
improve the efficiency of the attack by investigating sev-
eral profiled and non-profiled attacks in protected contexts
compared to an unprotected context. On one hand, we com-
pare the previous results with multivariate regression attack
and nonlinear stochastic attacks to bypass the protection. On
the other hand, we add results on multivariate non-profiled
attacks and machine learning models during the key recov-
ery step. This provides a clear idea on how to improve the
results of Lerman et al. [30] by proposing an original efficient
strategy based solely on machine learning models. The main
purpose of our paper is to see the limit of a machine learn-
ing approach (i.e. based solely on machine learning mod-
els) against a protected device and, thereafter, to compare
this strategy to a broader set of attacks. In the second part,
we quantify the information that the profiled models retrieve
with a large learning set (i.e. in asymptotic contexts). Such
a study is of particular importance when the adversary has
no constraint on the number of measured traces during the
profiling step.

As in Lerman et al. [30], our requirements are fast-
execution, low-memory usage and high success rate of the
attack. The purpose is to put ourselves in a realistic attack
scenario before deployment or certification process (that are
expensive and time consuming).

We made a detailed assessment of the proposed strategy
by considering several public datasets with different num-
ber of traces during the profiling phase and the attacking
phase. These traceswere collected on a smart card that imple-
ments the block-cipherAESprotected by a lightweightmask-
ing scheme. All our datasets were extracted from the public
dataset of the DPAContest V4 [11], “an initiative towards an
international benchmarking reference” [11].

The rest of the paper is organized as follows. Section 2
discusses side-channel attacks, non-profiled attacks, pro-
filed attacks,masking countermeasures and strategies against
countermeasures. Section 3 introduces our original attack
based on a machine learning approach against a masking
scheme. Section 4 illustrates the power of our proposal with
a large number of experiments. Section5 concludes this paper
with several perspectives of future work.

2 Preliminaries

In this section we introduce the basic definitions of side-
channel attacks, non-profiled attacks, profiled attacks, mask-
ing countermeasures and strategies against countermeasures.

123

J Cryptogr Eng (2015) 5:123–139 125

2.1 Side-channel attacks

During the execution of an encryption algorithm, the crypto-
graphic device processes a function f (targeted by the adver-
sary)

f : P × O → F
s = fO(p) (1)

called a sensitive variable [44] where

– O ∈ O (and O = {O0, O1, . . . , OK−1} is a key-related
informationwhereO = {0, 1}l1 , l1 is the size of the secret
value used in f (e.g. one byte of the secret key) and K is
the cardinality of O

– p ∈ P (andP = {p0, p1, . . . , pP−1} represents a public
informationwhereP = {0, 1}l2 , l2 is the size of the public
value used in f (e.g. one byte of the plaintext) and P is
the cardinality of P

– F = {0, 1}l3 is the codomain of f where l3 is the size of
the output of f .

Note that l1, l2 and l3 depend on the cryptographic algorithm
and the device architecture. We assume that the adversary
wants to retrieve the secret value usedwhen the cryptographic
device (executing a known encryption algorithm) encrypts
known plaintexts.

Prouff [43] showed that nonlinear functions are less robust
against side-channel attacks than linear functions.As a result,
usually, the target function f represents a nonlinear function
such as a substitution box (SBox) of the block-cipher, e.g.

fO(p) = SBox(p ⊕ O) (2)

where ⊕ is the bitwise exclusive-or.
Let

j T i =
{
j
t T i ∈ R | t ∈ [1; n]

}
(3)

be the j-th leakage information (called trace) associated to
the i-th target value.Weconsider the leakage information j

t T i

of the device at time t depending on the output of fOi (p) such
that
j
t T i = yi + ε (4)

= L (fO (p)) + ε (5)

where yi = L (fO (p)), ε ∈ R is the noise following a
Gaussian distribution with zero mean and L is the leakage
model

L : F → Y (6)

y = L (fO (p))

where Y = {y1, y2, . . .} ⊂ R (also known as the set of
classes). Examples ofmodels L are the identity, theHamming
weight (HW) and the Hamming distance [33].

2.1.1 Non-profiled attacks

Non-profiled attacks are commonly used to target a crypto-
graphic device. These attacks estimate the output value of
fO(p) for each possible target value O . Then, the estimated
leakage model L̂ transforms this output value to allow, in
fine, to compare the real and the predicted leakage informa-
tion with a distinguisher D (e.g. the Pearson correlation).
Mathematically, a univariate non-profiled attack returns the
target value Ô that maximizes

Ô = argmax
O∈O

|D(T̂(O),T)| (7)

where

– |x | designates the absolute value of x
– T = [

1
t T , . . . , Nt T

]
represents a list of traces measured

at time t (i.e. it T ∈ R ∀i ∈ {1; N })
– T̂ (O) =

[
L̂(fO(p[0])), . . . , L̂(fO(p[N]))

]
refers to a

list of estimated leakages parameterized with an esti-
mated key O and known plaintexts p[i] associated to i

t T
(i.e. L̂(fO(p[0])) ∈ Y).

This paper focuses on correlation power analysis where the
distinguisher represents the Pearson correlation estimator.

The multivariate non-profiled attack generalizes the uni-
variate attack by considering several time instants related to
the target information. According to [19], there are two mul-
tivariate approaches: (a) apply an attack to a combination of
power leakages, or (b) apply an attack to multiple sample
points independently and then combine their results. In our
experiments, we considered both approaches.

2.1.2 Profiled attacks

Let Pr [A] be the probability of A and let Pr [A | B] be the
probability of A given B. The profiled attack strategy repre-
sents a more efficient attack by deeper leakage estimations. It
estimates (with a set of traces called learning set) a template
Pr

[
j T i | yi ; θi

]
(where θi is the parameter of the probability

density function) for each target value during the profiling
step (also known as learning step). The learning set is mea-
sured on a controlled device similar to the target chip. In our
experiments, we used the same cryptographic device but we
refer to [37] that studies practical issues when the controlled
and the target devices differ.

Once a template is estimated for each target value, during
the attacking step the adversary classifies a new trace T (mea-
sured on the target device) using the a posteriori probability
returned by a model A(T)

123

126 J Cryptogr Eng (2015) 5:123–139

ŷ = A(T) = argmax
yi∈Y

Pr [yi | T] (8)

= argmax
yi∈Y

Pr [T | yi] × Pr [yi]

Pr [T]
(9)

= argmax
yi∈Y

P̂r
[
T | yi ; θ̂i

]
× P̂r [yi] (10)

where the a priori probabilities P̂r [yi] are estimated by the
user accordingly.

If a set T of traces (where T = [
1T , . . . , N T

]
and i T ∈

R
n ∀i ∈ {1; N }) for a constant secret key are available, the

adversary uses the equation (or the log-likelihood rule)

Ô = argmax
yi∈Y

N∏
j=1

Pr
[
j T | yi

]
× Pr [yi] (11)

Several approaches exist to estimate the probability
Pr [Ti | yi] such as the parametric template attack [5], the
stochastic attack [46], the multivariate regression model [49]
and the non-parametric machine learning models [22,27].

Template attacks Template attacks [5] assume that Pr
[Ti | yi] follows aGaussian distribution for each target value,
i.e.

P̂r
[
Ti | yi ; θ̂i

]
= P̂r

[
Ti | yi ; μ̂i , �̂i

]
(12)

= e− 1
2 (Ti−μ̂i)�̂

−1
i (Ti−μ̂i)

�
√

(2π)n det(�̂i)

(13)

where det(�) denotes the determinant of the matrix � while
μ̂i ∈ R

n and �̂i ∈ R
n×n are respectively the expected value

and the covariance of the n variate traces associated to the
i-th target value.

Stochastic attacks Stochastic attacks [46] (also known as
linear regression attack) model the leakage information that
depends on the secret value yi = fO (p) at time t with a
regression model t h, i.e.

j
t T i = L (yi) + ε (14)

= t h (yi) + t R (15)

= t c +
U∑
u=1

tαu gu (yi) + t R (16)

where t R ∈ R is a residual Gaussian noise at time t ,
{t c, tα1, . . . , tαU } ∈ R

U+1 is the parameter of the regression
model t h and {g1, . . . , gU } is the basis used in the regression.
Each gu is a monomial of the form

∏
j∈J Bit j (yi) where

Bit j (yi) returns the j-th bit of yi and J ⊂ {1, 2, . . . , l3}. In
other words, we can vary the degree of a stochastic model
from 1 through to l3 to vary its complexity. For example, in
a linear basis, each function gu equals to

gu (yi) = Bitu (yi) (17)

Then, the attacker assumes that Pr [T | yi] follows the
Gaussian distribution N (h (yi),�) where h(yi) equals to
{1h(yi), 2h(yi), . . . , nh(yi)} and � ∈ R

n×n is the covari-
ance matrix of the residual term. An extended version of
stochastic attack removes the profiling step [10]. However,
this approach is out of the scope of this work.

Multivariate regression attack Themultivariate regression
model [49] describes the relationship between a set of n fea-
tures representing a trace Ti = {1Ti , . . . , nTi } ∈ R

n and the
target value such that

yi = c +
n∑
j=1

α j j Ti + ε (18)

where α j ∈ R ∀ j ∈ {1; n} .

Non-parametric machine learning attack Non-parametric
(supervised) machine learning models make no assumptions
about the density distribution functions.

Themachine learning field regroups several learning algo-
rithms. For example, random forest model (RF) [3] builds
a set of decision trees that classifies a trace based on a vot-
ing system. Support vector machine (SVM) [7] discriminates
traces associated to different target values with hyperplanes
in optionally a higher dimensional space than the original
dimension. Unfortunately, no statistical modeling algorithms
can be entitled to be the universally best one as formalized
by the no-free-lunch theorem.

We refer to [2,21–23,27–29] for a detailed introduction
to the non-parametric machine learning models.

2.2 Masking countermeasure

Based on secret sharing, the masking countermeasure aims
to reduce the unintentional leakage information of a cryp-
tographic device [4]. For this, the method masks a public
information p with d uniformly distributed random values
v = {v0, v1, . . . , vd−1} ∈ Vd changing at each execution
where V = {0, 1}l4 and l4 is the size of each random value.
This approach is called a masking scheme of order d. From
a theoretical point of view, the security level of a masked
implementation against side-channel attacks increases expo-
nentially with d [4] when the amount of noise in the traces
is sufficiently high [48].

To deal with the mask values, the encryption scheme (E)
is modified and satisfies the relation

E ′(plaintext, key,masks) = E(plaintext, key) (19)

where E ′ is the modified encryption algorithm. In other
words, E and E ′ output the same ciphertext when the same
pair {key;plaintext} is used. However E and E ′ manipulate

123

J Cryptogr Eng (2015) 5:123–139 127

different internal values. If correctly implemented, the leak-
age of themasked implementation becomes statistically inde-
pendent of the key.

The public cryptographic literature provides plenty of
masking schemes based on the one time pad. The Boolean
masking computes the combination of p and v with the bit-
wise exclusive-or operation [4]. The multiplicative masking
performs the combination with a multiplication in the field
GF(2n) [1,18]. The affinemasking combines the advantages
of the previous schemes in a security point of view with the
cost of a heavy operation during the encryption step [50]. Our
paper deals with the most common method—the Boolean
masking scheme—as the DPAContest V4 uses it.

The main issue in designing masking scheme lies in prop-
agating the mask values throughout nonlinear functions (i.e.
SBox(p ⊕ v) 	= SBox(p) ⊕ SBox(v)). Several approaches
exist to modify the SBoxes part. One of the easiest approach
computes a table look-up which associates to each masked
input p ⊕ vinput the output value SBox(p) ⊕ voutput where
vinput and voutput are mask values [36]. However, such fast
approach may require a lot of memory to store the tables.
This is the proposed target masking scheme of the DPACon-
test V4.

2.3 Strategies against countermeasures

Recently, Moradi et al. [38] show that an adversary can suc-
cessfully target a masked scheme when the implementation
of the countermeasure contains mistakes. More precisely, a
non-profiled CPA attack with an appropriate model retrieves
the secret key with less than 200 traces.

When the masked implementation is correctly imple-
mented, potentially, an adversary can retrieve the secret infor-
mation using an attack of order d + 1 (where the attacker
considers d + 1 targets: the set of d random mask values and
a key-related information). More precisely, the (d+1)-order
non-profiled attack combines d+1 points in each trace asso-
ciated to themask values (e.g. in amasking schemeof order 1,
the adversary combines instants associated to the target value
HW(fO(p) ⊕ v0) and to HW (v0) where v0 represents the
mask value). Then, after this combination, a classical non-
profiled attack is performed. It turns out that in a d-order
masking scheme and with a correlation power analysis, the
combination of d+1 different instants (related to the d mask
values and to the target value) correlates to the targeted sen-
sitive variable but the masking scheme can still affect the
success of the attack as the combination does not remove
completely the dependence with the mask values [40].

In a secure implementation context, it is necessary that
the mask values remain secret. Indeed, once the mask value
is revealed or removed, the attacker is able to execute an
efficient non-profiled or profiled attack.

In 2008, Schindler [45] extended the stochastic attack to a
masking context by taking into account the mask value v in
the deterministic part when targeting the secret information
yi = fO(p ⊕ v), e.g.

j
t T i = L(yi) + ε (20)

= t h(yi) + t R (21)

=
{
t c + ∑

u tαu gu(fO(p ⊕ v)) + t R t ∈ T1

t c + ∑
u tαu gu (v) + t R t ∈ T2

(22)

where T1 and T2 represent sets of time instants correlated
respectively to fOi (p ⊕ v) and to v. During the attacking
step, the adversary replaces the probability P̂r[T | yi ; θ̂i] in
(10) with

Pr [T | yi = fO (p)] =
∑

v∈Vd

Pr [T | yi = fO (p ⊕ v)] (23)

where Pr[T | yi = fO(p ⊕ v)] follows the Gaussian distri-
butionN (h(yi),�). The main advantage of this approach is
that we need a smaller set of measurements during the pro-
filing step compared to template attack applied to masking
[45].

Oswald et al. [40] evaluated several approaches to attack
a masked implementation with a combination between tem-
plate attack and correlation power analysis. In the same year,
Gierlichs et al. [16] extended these practical proposals with
a theoretical analysis. The first approach (called Templates
Before Preprocessing) uses template attack to extract the
values of the estimated leakage information of the d + 1
masked information (e.g. HW((fO(p ⊕ v)) and HW (vi))
before combining them and to apply a correlation power
analysis. The second approach (called templates during pre-
processing) forces a bias into the mask values by removing
traces associated to certain mask values. For this, the tem-
plate attack extracts mask-related information and keeps a
subset of traces associated to a subset of mask values. Then a
correlation power analysis on the selected traces reveals the
key. The third approach (called templates after preprocess-
ing) uses template attack to extract the unmasked sensitive
value (e.g. HW(fO(p))) and performs a correlation power
analysis on the extracted unmasked sensitive value. The
last approach (called template-based DPA) performs a tem-
plate attack against themasking implementation by replacing
Pr[T | yi] in Eq. 10 with

P̂r [T | yi] =
∑

v∈Vd

P̂r [T | yi ∧ v] × P̂r [v] (24)

As a result, we need card(Y) × card(Vd) templates (where
card(x) represents the cardinality of the set x), one for each
possible combination of yi and v.

123

128 J Cryptogr Eng (2015) 5:123–139

3 Machine learning approach against masking
countermeasure

We propose a new approach that uses a machine learning
approach to: (1) bypass the problem of combining masks-
related information that still keeps a dependence to mask
values (unlike the d-order non-profiled attack, the templates
before preprocessing and the templates after preprocessing);
(2) keep all traces in the attacking step (unlike the templates
during preprocessing); (3) reduce the number of templates
from |Q| × |Vd | to |Vd | (compared to the template-based
DPA) leading to several advantages.

From a theoretical point of view, the main issues are that:
(i) the number of required data increases with the number
of templates (cf. we need one learning set per template that
leads to a gigantic workload in the profiling step [45]) and
(ii) the imbalanced class problem [24] arises in the Template-
basedDPA according to the density distribution of L(fO(p))
(unlike our proposal).

From a practical perspective, in the case of the DPACon-
test V4, the adversary has no control on the attacked device.
As a result, we (empirically) estimated that template-based
DPA needs a large number of measurements in the profil-
ing step—at least 40,000 traces each of 435,002 samples,
representing more than 234 bytes of information—to have
at least one trace per template with probability 0.99 when
the Hamming weight leakage model is chosen. For the same
problem, our proposal needs at least 200 traces (i.e. a realistic
attack scenario). In practice, we need at least 48,698 traces
for template-basedDPA and at least 35 for our proposal when
considering the dataset of the DPAContest V4.

Our approach applies a profiled attack to extract the mask
values (during the mask recovery step) before a non-profiled
attack that retrieves the secret key (during the key recovery
step). Note that this approach is generalizable to the case
where a profiled attack is used to extract the secret key.
Furthermore, we assume to be in the worst case scenario
where the adversary knows the mask values used during the
profiling phase. Our requirements are fast-execution, low-
memory usage and high success rate (i.e. realistic attack sce-
narios). Efficient methods to perform profiled attacks have
been proposed recently [2,21–23,27,28]. These methods use
a machine learning model that returns the target value after a
learning (profiling) step. Concerning the non-profiled attack,
several approaches exist. One of the most efficient meth-
ods represents the correlation power analysis that does not
require any estimation probability density function. Note that
our method can be extended to other (nonlinear) distinguish-
ers.

During the profiling phase, we make three main steps on
a controlled device: (1) we collect a set of traces T with an
oscilloscope; (2) we select p points {t1, t2, . . . , tp} that are
significantly correlated to knownmask values; (3) we build a

profiled model A(T) that returns the (combination of) d esti-
mated mask values based on a trace T at time {t1, t2, . . . , tp}.
We also build a learning model against the target function yi
if the adversary uses it during the mask recovery step. Dur-
ing the attacking phase, we then use A(T) for each collected
traces (on a target device) to take into account the estimated
mask values during the mask recovery step. Example 1 illus-
trates our proposal with a specific case.

Example 1 Suppose that we target a masking scheme of
order 1 and that we build one support vector machine [3]—
a machine learning model—A(T) during the profiling step.
Our target value represents the output of a masked nonlinear
function SBox(p ⊕ v ⊕ O). The correlation power analysis
step returns the key that maximizes

Ô = argmax
O∈O

|ρ(T̂ (O),T)| (25)

where

– ρ represents a Pearson correlation estimator.
– T = [

1
t T , . . . , Nt T

]
represents a list of traces measured

at time t
– T̂ (O) = [

HW(fO(p[1] ⊕ A(1t T))), . . . ,HW(fO(p[N]
⊕A(Nt T)))

]
refers to a list of estimated leakages para-

meterized with an estimated key O and known plaintexts
p[i] associated to T.

Figure 1 summarizes our approach. First, during a prelim-
inary phase, we implement the cryptographic device with its
countermeasure before collecting a set of traces. Secondly,
during the profiling phase, we reduce the number of points
per trace with a feature selection algorithm [8] before select-
ing the best profiled model. In the third phase, we use the
selected profiled model with a non-profiled attack or a pro-
filed attack to extract the secret key value. This phase allows
to estimate the resistance of cryptographic devices during the
post-attacking phase (called the Security Level Estimation in
Fig. 1) based for example on the number of traces required
to extract the key.

The success of this approach is strictly related to the qual-
ity of our profiled model: the lower the error between the
correct and the estimated mask values by the profiled model,
the higher is the correlation between the real and the pre-
dicted traces for the correct key during the attacking phase.
As a result, reducing the error of the profiled model leads to
reduce the number of traces required to distinguish the cor-
rect key from the others. In the ideal case, our model extracts
the mask values with probability one and, as a result, correla-
tion power analysis returns the key with the same number of
traces as an unprotected implementation during the attacking
phase.

Several previous works showed that a machine learning
approach improves the success of attackswith respect to tem-

123

J Cryptogr Eng (2015) 5:123–139 129

Fig. 1 Strategy against a
masked implementation

Data Collection
Cryptographic Device

Implementation Pre-Processing

PRELIMINARY PHASE

Mask Recovery Step

(e.g. SVM, TA, SA)

PROFILING PHASE

ATTACKING PHASE

Key Recovery step

(e.g. CPA, MIA, SVM)

mask value
Security Level

Estimation

POST-ATTACKING PHASE

1 2

34

Profiled Model Selection

plate attack [2,21–23,27,28]. Therefore,we expected that the
machine learning approach induces a reduction of the number
of traces during the attacking phase compared to a strategy
based on template attack.

In parallel, the quantity of traces used during the profiling
step should influence the number of traces required during
the attacking phase. Indeed, the variance ofmodels decreases
as the training set size increases [20]. Therefore, the higher
the number of traces in the learning set, the lower is the
error between the correct and the estimated mask values and
the lower the number of traces required during the attacking
phase. Several experiments have been performed to verify
these intuitions.

4 Experiments and discussion

This section regroups all our experiments. In the following,
the notation A/B is used in a masking context to denote the
configuration with the learner A used in the Mask Recov-
ery step and a profiled attack or a non-profiling attack B
used in the Key Recovery step. In an unprotected context, the
notation/A indicates a profiled attack or a non-profiling attack
used in the Key Recovery step.

4.1 Target implementation

The experiments were carried out on electromagnetic emis-
sion leakages that are freely available on the DPAContest
V4 website [11] to easily reproduce the results. The target
cryptographic device (an Atmel ATMega-163 smart card)
implements in software the masked block-cipher AES-256
in encryption mode without any mode of operation. Each
trace has 435,002 samples associated to the same secret key
and measured during the first round. The masking scheme is
a variant of the “Rotating Sbox Masking” [39]; an additive
Booleanmasked schemewithmasked SBox.According to its
authors, it has a low-cost design and keeps performances and

complexity close to the unprotected scheme (in a hardware
context) while being resistant against several side-channel
attacks. The purpose of the DPAContest is to retrieve the
first 128 key bits. As we target the first 128 key bits and since
the first round of AES-128 and AES-256 is the same, in the
following we focus on AES-128.

The “Rotating Sbox Masking”, modified for the DPACon-
test, uses sixteen public masks v = {v0, v1, . . . , v15}. This
strategy is based on a low-entropy masking scheme that aims
to limit the amount of entropy. At the beginning of each
encryption a random secret value (called offset) is drawn ran-
domly between 0 and 15. Then, the i-th byte of the plaintext
is xored with the mask vi+offset, i.e.

pi ⊕ vi+offset = si = one byte of the STATE (26)

where i + offset is computed modulo 16. Sixteen cus-
tomized SBox (called MaskedSubBytes) are precomputed
such thatMaskedSubBytesi (s j) = SBox(s j⊕vi)⊕vi+1, i ∈
{1, 2, . . . , 16}. As a result, the hardware and software design-
ers precompute once the sixteen SBoxes and store them in
memory.

After the linear part of AES, an additional operation is
processed to ensure that the State input for the next round
equals
⎛
⎜⎜⎝MC ◦ SR ◦ SBox ◦

⎧⎪⎪⎨
⎪⎪⎩

s0 ⊕ v0+offset+r ⊕ Or
0 . . .

s1 ⊕ v1+offset+r ⊕ Or
1 . . .

s2 ⊕ v2+offset+r ⊕ Or
2 . . .

s3 ⊕ v3+offset+r ⊕ Or
3 . . .

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

⊕

⎧⎪⎪⎨
⎪⎪⎩

v0+offset+r+1 . . . v12+offset+r+1

v1+offset+r+1 . . . v13+offset+r+1

v2+offset+r+1 . . . v14+offset+r+1

v3+offset+r+1 . . . v15+offset+r+1

⎫⎪⎪⎬
⎪⎪⎭

(27)

where r ∈ {0, . . . , 8} (for AES-128) is the round number,
Or
i is the (i +1)-th byte of the r -th subkey while SR andMC

represent respectively the ShiftRow and the MixColumns
operations of AES. For the last round (where r = 9 for

123

130 J Cryptogr Eng (2015) 5:123–139

AES-128), the masking scheme insures that its output value
equals to
⎛
⎜⎜⎝SR ◦ SBox ◦

⎧⎪⎪⎨
⎪⎪⎩

s0 ⊕ v0+offset+r ⊕ Or
0 . . .

s1 ⊕ v1+offset+r ⊕ Or
1 . . .

s2 ⊕ v2+offset+r ⊕ Or
2 . . .

s3 ⊕ v3+offset+r ⊕ Or
3 . . .

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

⊕

⎧⎪⎪⎨
⎪⎪⎩

v0+offset+r+1 . . . v12+offset+r+1

v1+offset+r+1 . . . v13+offset+r+1

v2+offset+r+1 . . . v14+offset+r+1

v3+offset+r+1 . . . v15+offset+r+1

⎫⎪⎪⎬
⎪⎪⎭

(28)

Finally, the last mask values are removed with a xor opera-
tion.

The DPAContest V4 uses a SASEBO-W platform that
contains an ATMega163 8-bit smart card. The smart card
is powered at 2.5V and clocked a 3.57 MHz. A LeCroy
wave-runner 6100A oscilloscope was used. The bandwidth
is 200MHz and the sampling rate equals 500MS/s. We refer
to [11,39] for additional information on this masking scheme
and on the acquisitions setup.

4.2 Experimental results

For the sake of fairness, we compared different attacks based
on the same target value and the same dataset: each attack
extracts first the offset value before applying a key recovery
step. Note that an adversary targeting the offset or the mask
value leads to the same result in our case: the (Pearson) cor-
relation between them equals one. We suggest to target the
mask value when the setting differs.

All our experiments were executed on a MacBook Pro
with 2.66 GHz Intel Core 2 Duo, 8 GB 1,067 MHz DDR3
with the tenth major release of OS X (i.e. OS X Mavericks
version 10.9). The attack process lasted roughly 3 weeks
without considering the step of collecting the traces.

4.2.1 Finding the offset value on traces

Before proceeding with the quantitative analysis, we report
here a preliminary visualization phase that allowed us to find
the points that are the highest correlated with the secret off-
set. For the sake of time and memory (and due to the big
data context), we computed the efficient Pearson correlation
between each instant of 1,500 traces and the offset values
(see Fig. 2). However, we suggest to test several other meth-
ods in a non-big data scenario (or when the adversary has
enough time, memory and money) such as strategies based
onmutual information (e.g. minimum redundancymaximum
relevance [42]), the sum of squared pairwise T-differences
filter [17] and the principal component analysis [41]. It is
worth emphasizing that several instants are (significantly)
correlated with the target value. Visualization suggests that

Fig. 2 Correlation between offset and power values at each time in the
first round of the masked AES

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

number of features per trace

Size of the learning set
100%
75%

50%
25%

Fig. 3 Support vector machine

apart from the central part of traces there is a high amount
of information about the offset value available in each trace.
As a consequence, we should expect that the profiled model
would output the right offset value with a high probability.

4.2.2 Model selection

This section assesses and compares several classifiers that
extract the secret offset value. We considered five differ-
ent types of multi-class classification models: support vector
machine (SVM), random forest (RF), template attack (TA),
stochastic attack (SA) and multivariate regression analysis
(MRA). We used two disjoint sets: a learning set of 1,500
traces to estimate the parameters of each model and a val-
idation set of 1,500 traces to measure their success rate in
predicting the right offset value. During the feature selec-
tion step, in each trace, we selected 50 instants that are the

123

J Cryptogr Eng (2015) 5:123–139 131

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
su

cc
es

s
ra

te

number of features per trace

Size of the learning set
100%
75%

50%
25%

Fig. 4 Random forest

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

number of features per trace

Size of the learning set
100%
75%

50%
25%

Fig. 5 Template attack

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

number of features per trace

Size of the learning set
100%
75%

50%
25%

Fig. 6 Stochastic attack with degree 1

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

number of features per trace

Size of the learning set

100%
75%

50%
25%

Fig. 7 Multivariate regression analysis

highest linearly correlated with the offset value.1 We did not
considered other feature selection methods (such as “Prin-
cipal Component Analysis” [41] or “minimum Redundancy
Maximum Relevance” [42]) due to their massive memory
requirements or time consuming while our dataset contained
1,500 × 435,002bytes > 229 bytes.2 We refer to [32] for
an analysis of practical issues that a security evaluator faces
when performing side-channel attacks. In spite of the low fea-
ture selection complexity, we observed a high success rate of
the models.

Figures 3, 4, 5, 6 and 7 report the success rate to predict
the right offset value as a function of the number of points
(that were selected from the sorted 50 instants) used in each
trace for respectively support vector machine, random forest,
template attack, stochastic attack (with degree 1) and mul-
tivariate regression analysis. We can deduce the following
observations. First, as expected, the higher the number of
traces in the learning set (from 25 to 100 % of 1,500 traces),
the higher is the accuracy, with an exception for multivariate
regression analysis. This can be explained by the fact that the
low complexity of the multivariate regression analysis (low
variance) requires a small learning set to reach its best result.
Secondly, the number of selected points in each trace influ-
ences the success rate: the higher the number of features,
the higher is the success rates for support vector machine,
random forest, stochastic attack and multivariate regression
analysis. It is interesting to remark that in a small learning
set setting (i.e. less than 75 % of the entire learning set) the
template attack reduces its success rate when the number
of features goes beyond a certain size. This is presumably

1 The 50 instants are sorted in descending order with respect to their
correlation coefficient in absolute value.
2 Each sample of the trace is an 8-bit value. The limit of R—the used
program language—is 231 bytes for a matrix.

123

132 J Cryptogr Eng (2015) 5:123–139

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

number of features per trace

Degree of the polynomial
Degree 1
Degree 2

Degree 3
Degree 4

(a) 25%

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

number of features per trace

Degree of the polynomial
Degree 1
Degree 2

Degree 3
Degree 4

(b) 100%

Fig. 8 Stochastic attack with different degrees (from 1 to 4) using 25 % (a) and 100 % (b) of 1,500 traces in the learning set

0 3 6 9 12 16 20 24 28 32 36 40 44 48

su
cc

es
s

ra
te

number of features per trace

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Model

SVM
RF
TA

SA
MRA
Random

Fig. 9 SVM vs RF vs TA vs SA vs MRA vs random

due to the ill-conditioning of the covariance matrix when the
number of features is too large.

Figure 8 shows what happens when we build a stochastic
attack with different degrees (from 1 through to 4). In our
setting, the linear stochastic attack reaches similar results as
the nonlinear stochastic attack. This observation is not sur-
prising since, for computational reasons, we applied a feature
selection that searches for linear dependencies. As a result,
we consider the linear model in the following. However, the
results may change if the size of the profiling set increases
as the nonlinear stochastic attack (that has more parameters
to estimate than the linear approach) requires more traces to
estimate its parameters.

Figure 9 combines the success rate of a randommodel (i.e.
1
16) and the five previousmodels (i.e. support vectormachine,
random forest, template attack, linear stochastic attack and

S
iz

e
of

 th
e

le
ar

ni
ng

 s
et

0

1000

2000

3000

4000

5000
6000

7000
8000
9000

Number of features per trace
0

5
10

15
20

25
30

35
40

45
50

success rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9
1.0

Fig. 10 Template attack

multivariate regression analysis) by choosing the best size
for the learning set that is 100 % of 1,500 traces. In our set-
ting, multivariate regression analysis has the worst success
rate. Therefore, we do not consider this model in the follow-
ing of our experiments. The success rates of support vector
machine, random forest and stochastic attack are similar and
greater than the success rate of template attack. We could
argue that template attack requires a larger learning set. Fig-
ures 10 and 11 highlight the impact on the success rate of
respectively template attack and support vector machine by
increasing the size of the learning set until 8,500 traces.3 The
success rate of template attack remains lower than support
vector machine.

3 Note that the first four sizes represent 25, 50, 75 and 100 % of 1,500
traces.

123

J Cryptogr Eng (2015) 5:123–139 133

S
iz

e
of

 th
e

le
ar

ni
ng

 s
et

Number of features per trace

success rate

0

1000

2000

3000

4000

5000
6000

7000
8000
9000

0
5

10
15

20
25

30
35

40
45

50
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0

Fig. 11 Support vector machine

0 3 6 9 12 16 20 24 28 32 36 40 44 48

tim
e

(in
 m

s)

number of features per trace

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Model

SVM RF TA

Fig. 12 Time to process a trace in the learning step (in ms) per number
of feature selected

Note that we did not select the best meta-parameter val-
ues for support vector machine and random forest (such as
the number of trees in the random forest) but only the best
number of features (from 2 to 50) to predict the target value.
The default values of the implementation of support vector
machine [9] and random forest [31] were used.4 As a con-
sequence, we do not claim that the Support Vector Machine
configurations and the random forest configurations are nec-
essarily the best one for profiled attack for our experiments.
However, our experiments show that a profiled attack based

4 Support vector machine had a radial kernel with a gamma equals to
the inverse of the data dimension and a cost of 1. Random forest had
500 trees.

0 3 6 9 12 16 20 24 28 32 36 40 44 48

tim
e

(in
 m

s)

number of features per trace

0

5

10

15

20

25

30

35

40

Model

SVM RF TA

Fig. 13 Time to process a trace in the attacking step (inms) per number
of feature selected

on a machine learning model extracts more information on
the offset value than a strategy based on template attack for
the presented task.

Based on the above considerations, and to choose the best
learning model, we looked at the learning time and the pre-
diction time of the offset, based on one trace, as a function
of the number of selected points (see Figs. 12, 13). Tem-
plate attack has the lowest learning time while its prediction
time increases exponentially in the number of selected fea-
tures. Support vector machine has a lower learning time and
a reasonable prediction time compared to random forest. As
a result, in the attacking step, we use only a support vector
machine as the machine learning model. We do not report
the results for stochastic attack or for multivariate regres-
sion analysis as we used unoptimized and nonpublic imple-
mentations. According to the previous results, we selected
50 features for support vector machine, template attack and
stochastic attack (of degree 1) leading to a success rate of
respectively 0.88, 0.66 and 0.90.

4.2.3 Key recovery step

During the attacking step we considered four settings target-
ing the Hamming weight of theMaskedSubBytes. In the first
setting, the correlation power analysis extracts the secret key
on an unmasked implementation (i.e. the non-profiled attack
always receives the correct offset value). The second setting
targets the masked implementation where a support vector
machine extracts the mask value and where a correlation
power analysis searches the secret key. In the third and fourth
experiments, we exchanged the support vector machine by
respectively the template attack and the stochastic attack.We
repeated ten times each setting with a different set of traces

123

134 J Cryptogr Eng (2015) 5:123–139

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80
nu

m
be

r
of

 tr
ac

es

number of features per trace

Model
SA against a protected device

Fig. 14 Number of traces during the attacking phase in function of the
number of features

during the attacking phase while the learning set remains the
same.

Figure 15 summarizes the number of key bytes found as
a function of the number of traces used (in average) during
the non-profiling phase for each setting. We found the key
with 16.3 traces (with less than 5 s of execution time) for the
unmasked implementation. For the masked implementation,
we extracted the key with 26 traces (with less than 20 s of
execution time) using the support vector machine, with 27.8
traces (with less than 80 s of execution time) using the sto-
chastic attack and with 56.4 traces (with less than 45 s of
execution time) using the template attack. Figure 16 shows
theminimum, themaximumand the average number of traces
used to find the key. Compared to each strategy applied on the
protected device, the support vectormachine (combinedwith
the correlation power analysis) leads to the closest results to
an unprotected configuration.

For the sake of completeness, we also implemented the
state-of-the-art stochastic attack on the masking scheme
without a non-profiling step as proposed by Schindler [45]
(see Eq. 20). Figure 14 shows the number of traces needed
on a validation set in function of the number of features used.
The stochastic attack needs more than 40 traces to find the
key when the model considers more than 5 features and it
reaches the minimum with 3 features. According to Fig. 15,
stochastic attack needs 107 traces in average to extract the 16
key bytes on a testing set (with less than 180 s of execution
time) (Fig. 16).

4.2.4 Attacking step with a multivariate key recovery step

To improve our best attack (i.e. the combination of support
vector machine and correlation power analysis), we have
studied how tominimize the number of traces used during the
key recovery step by mixing n sample points. As discussed

0 10 20 30 40 50 60 70 80 90 100 110

0

2

4

6

8

10

12

14

16

nu
m

be
r

of
 k

ey
 b

yt
es

 fo
un

d

number of traces in average

CPA against an unprotected device
SVM/CPA against a protected device
SA/CPA against a protected device
SA against a protected device
TA/CPA against a protected device

Fig. 15 Comparison of attacks against unprotected and protected AES

Minimum number of traces
Average number of traces
Maximum number of traces

0

25

50

75

100

125

150

175

200

CPA
SVM

SVM / S
VM

SVM / C
PA

SA / C
PA

TA / C
PA

SA

nu
m

be
r

of
 tr

ac
es

Unprotected device Protected device

Fig. 16 Minimum, maximum and average number of traces used by
each attack to find the key

in Sect. 2.1.1, we can either (a) apply a strategy (based on
a non-profiling attack or a profiling attack) to a combina-
tion of power leakages, or (b) apply a non-profiling attack
to multiple sample points independently and then combine
their results. This section considers both methods.

We tested three combination functions which we note
as COMB: the first combines the result of each correlation
power analysis with the mean function, the second uses the
weighted mean while the last uses the max function. Mathe-
matically, the attack returns the target value Ô thatmaximizes

Ô = argmax
O∈O

COMB (|D0|, . . . , |Dn|) (29)

where Di denotes a distinguisher applied on the set of traces
measured at time i . We define the mean function as

COMB (|D0|, . . . , |Dn|) = 1

n

n∑
i

|Di | (30)

123

J Cryptogr Eng (2015) 5:123–139 135

0 2 4 10 15 20 25 30 40

0

4

8

12

16

20

24

28

32

36

40

44

48

1 3 5

nu
m

be
r

of
 tr

ac
es

number of samples

Maximum number of traces
Average number of traces
Minimum number of traces

Fig. 17 SVM/multivariate CPA with the max function

The weighted mean function equals to

COMB (|D0|, . . . , |Dn|) = 1

n

n∑
i

ρi |Di | (31)

where ρi represents the Pearson correlation between the
instant i on the traces and the i-th target value. Finally, the
max function represents

COMB (|D0|, . . . , |Dn|) = max
i∈{1,2,...,n} |Di | (32)

We varied the number of sample points between 1 and 40 to
select the best value. Figures 17, 18 and 19 report the mini-
mum, the average and the maximum number of traces used
to extract the secret key in function of the number of sam-
ples combined respectively with the max, the mean and the
weighted mean function.We reach the minimum of 23 traces
in average with 10 samples when considering the max func-
tion. We improve this result with the mean and the weighted
mean function: 20.9 traces in average with 40 samples.

The second approach combines first the points before to
apply a key recovery attack. In practice, we used a support
vectormachine that learns the dependence between the power
leakage (of different instants) and the target value that is the
Hamming weight of the output of a MaskedSubBytes. Each
support vectormachinewas buildwith 1,500 traces and tested
with a validation set of 1,500 traces. We selected the best
number of features between 2 and 40. Figure 20 shows the
success rate of each support vector machine in function of
the number of features used. In the best setting, the worst
Support Vector Machine has a success rate of 0.85 while the
best reaches a success rate of 0.95. After the selection of the
best configuration, we used 3,000 traces (that were used pre-
viously) in the learning set to attack each MaskedSubBytes.
Figure 16 shows the minimum, the average and the maxi-
mum number of traces when we use an /SVM (when there

0 2 4 10 15 20 25 30 401 3 5

0

4

8

12

16

20

24

28

32

36

40

44

48

52

nu
m

be
r

of
 tr

ac
es

number of samples

Maximum number of traces
Average number of traces
Minimum number of traces

Fig. 18 SVM/multivariate CPA with the mean function

0 2 4 10 15 20 25 30 401 3 5

0

4

8

12

16

20

24

28

32

36

40

44

48

52

nu
m

be
r

of
 tr

ac
es

number of samples

Maximum number of traces

Average number of traces
Minimum number of traces

Fig. 19 SVM/multivariate CPA with the weighted mean function

are no protection) and an SVM/SVM (when there is a pro-
tection). The /SVM requires on average 6.1 traces while the
SVM/SVM needs only slightly more, on average 7.8 traces.
However, the SVM/SVM requires a longer execution time
than SVM/CPA: less than 130 s. Table 1 resumes the results
of strategies.

4.3 Discussions

The experimental results of the previous sections suggest
some considerations. First, we have demonstrated that the
masking scheme proposed by the DPAContest V4 can be
practically attacked with a combination between profiled
and non-profiled attacks. Our strategy represents a combi-
nation between a Support Vector Machine and a correlation
power analysis or another set of machine learning models.

123

136 J Cryptogr Eng (2015) 5:123–139

S
B

ox
 n

um
be

r

0

2

4

6

8

10
12

14
16

Number of features per trace
0

5

10
15

20
25

30
35

40

success rate

0.60
0.65

0.70
0.75

0.80
0.85

0.90
0.95

1.00

Fig. 20 SVM against the HW of the output of the MaskedSubBytes

Table 1 Summary results of strategies

Strategy Number of traces

Unmasked implementation

SVM 6.1

CPA 16.3

Masked implementation

SVM/SVM 7.8

Multivariate CPA (mean function) 20.9

Multivariate CPA (weighted mean function) 20.9

Multivariate CPA (max function) 23

SVM/CPA 26

SA/CPA 27.8

TA/CPA 56.4

SA 107

The SVM/CPA requires 26 traces during the attacking step
to extract the key of the implementation of a masked AES-
128. In comparison, a correlation power analysis against an
unmasked implementation required in average 16.3 traces.
We improved our results using a support vector machine dur-
ing the key recovery step (7.8 traces in average in order to
find the key) but with the cost of a longer execution time.
This result equals roughly to an unprotected context targeted
by a support vector machine.

The support vector machine succeeds to extract informa-
tion on the offset because the cryptographic device chooses
different operations in function of this value (e.g. the choice
of the masked SBox). Furthermore, the success of the attack
is related to the implementation: the device manipulates the
16 state bytes sequentially while they can be manipulated
in parallel on a FPGA. Moreover, the cryptographic device
selects randomly only one offset during whole of the encryp-

tion. As a result, many points in a trace relate to the chosen
offset.

The attack should be improved by increasing the number
of points selected in each trace. Indeed, Fig. 3 shows that the
maximum value of the success rate is still not reached by the
support vector machine targeting the offset value. However,
Fig. 12 shows that the learning step time increases linearly
with the number of points selected in each trace. As a result,
there is a trade off to be made between the accuracy of the
model and its learning speed.

The major consideration concerns accuracy since the
experimental results show that in several settings, when tar-
geting the offset value, machine learning improves the suc-
cess of attacks with respect to a strategy based on template
attack or to the state-of-the-art stochastic attack. More pre-
cisely, a machine learning model needs four times less traces
than the state-of-the-art stochastic attack onmasking scheme
and two times less traces than a strategy based on template
attack. A new strategy based on stochastic attack becomes
very competitive (in term of data complexity during the
attacking phase) as the machine learning model but with a
longer execution time than the support vector machine.

A possible justification of the superiority of machine
learning models derives from the results of the Shapiro–Wilk
multivariate Gaussianity test (SW test) [13] that we carried
out on the 1,500 traces used during the learning step5 by tem-
plate attack. The SW test was applied on several dimensions
and against each offset value. Figure 21 displays several box
plots that summarize the p-values of SW tests by taking into
account from 2 to 50 dimensions (the same as for the pre-
vious experiments) against each offset value. In agreement
with our results, SW test rejected the hypothesis of Gaussian-
ity in 90.56 % of multivariate configurations. The Mardia’s
test [34], another multivariate Gaussianity test, confirms the
previous results: 96.17 % of configurations are rejected by
the test. This test explains why template attack has a lower
success rate than the other non-parametric models: a large
majority of traces follow another unknown density probabil-
ity function. As a result, strategies based on template attack
(e.g. templates during preprocessing) should be less efficient
than a non-parametric machine learning model.

We also deem that another possible justification of the
strength of machine learning models relates to the number of
parameters to estimate (since a higher number of parameters
require a larger learning set). An interesting future work will
focus on the number of parameters of support vectormachine
compared to template attack (that depends on the number of
features) and to stochastic attack (that depends on the number
of features as well as the degree of the regression model). It
is worth to note that “how good is my profile” is still an open
question [12].

5 The significance level of the Gaussianity test equals 0.05.

123

J Cryptogr Eng (2015) 5:123–139 137

2 7 12 17 22 27 32 37 42 47

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
p−

va
lu

e

number of features per trace
0 1 2 3 4 5 6 7 8 9 10 12 14 16

p−
va

lu
e

number of features per trace

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 21 Boxplots of Shapiro–Wilk multivariate Gaussianity test. In
each box plot, the central bar corresponds to the median, the hinges
to the first and third quartiles, and the whisker represents the great-

est/lowest value excluding outliers. A p-value is considered as an outlier
when its value is more than 3

2 times of upper/lower quartile

5 Conclusion and perspectives

In this paper, we introduced an efficient machine learning
approach to evaluate the security level of a masked imple-
mentation of AES. Specifically, we extended the results of
previous related works to protected devices [2,21–23,27–
29]. The machine learning approach against a masked cryp-
tographic algorithm consists in attacking first the mask with
a machine learning model (i.e. a profiled attack) before tar-
geting the secret key with a non-profiled attack or profiled
attack.

We showed that the multivariate regression attack, the sto-
chastic attack or a strategy based on template attack over-
estimates the security level of protected device while the
machine learning approach improves significantly this esti-
mation. The main reason of the superiority of machine learn-
ing with respect to template attack relates to the rejection of
the multivariate Gaussianity tests that reject the hypothesis
that the traces follow a Gaussian distribution in a high num-
ber of configurations. Therefore, a machine learning model
extracts more information on the secret information (than
template attack) by analyzing the same leakage information.

The complexity of the key recovery step mainly depends
on the quality of the profiledmodel. The higher the success to
retrieve themask, the lower is the number of traces during the
attacking phase. As a result, compared to a template attack, a
learningmodel improves the probability to find the truemask
value from 0.66 to 0.88 with a consequent reduction of the
average number of traces during the attacking phase from
56.4 to 26 when considering a correlation power analysis
during the key recovery step. Regarding the state-of-the-art
stochastic attack, the learning model divides the number of

traces during the attacking phase by four. However, a new
strategy based on stochastic attack reduces this number to
27.8 traces (in average)when considering a correlation power
analysis during the key recovery step. In our context, the
main advantage of a machine learning approach represents
its speed: 80 s of execution time for a strategy based on
stochastic attack while the machine learning model requires
four times less. In comparison, a non-profiled attack against
an unmasked implementation needs 17 traces with 5 s of
execution time on the same cryptographic device. Therefore,
the masked implementation increases the data complexity
of the attack by two and the time complexity by four. We
reduced significantly the data complexity when considering
a machine learning model during the key recovery step: 7.8
traces in average to retrieve the secret key. This small number
is roughly the same when the cryptographic device has no
protection and targeted by a profiled attack.

The quality of the profiled attacks mainly depends on the
number of points selected on the traces. A robust feature
selection method allowed to reach a high success rate to find
the mask value and the output of each sensitive information
by the profiled model.

Interesting and as expected, the number of traces in the
learning set of the machine learning model influences the
result of the learning model targeting the mask values (the
higher the number of traces in the learning set, the better).
This is due to a reduction of the variance of the model.

The results of theDPAContest v4 validate the performance
of our attacks. According to the DPAContest, the SVM/CPA
approach requires 22 traces to find the correct key while the
SVM/SVM approach needs 7 traces. As a result, in both
cases, the hold-out validation method underestimates the

123

138 J Cryptogr Eng (2015) 5:123–139

strength of the attacks in the (private) dataset of the DPA-
Contest.

From an applied perspective, the machine learning app-
roach represents an effective, efficiency and automatic black-
box testing methodology capable of assessing the vulnera-
bilities of cryptographic hardware in the worst case scenario.
The rationale is that data acquisition from a cryptographic
device is expensive in terms of time and storage while the
penetration tests have to be performed in a very short time
(e.g. few weeks). As a result, strategies that reduce these
constraints are preferable.

About the interpretability issue, machine learning pro-
vides a methodology to obtain black-box tools to evaluate
the security level of a cryptographic device. Given its black-
box nature it is not easy to deduce why an attack works better
than another with a specific dataset. However, if the under-
standability of the attack is considered as more valuable than
the accuracy of the results then other machine learning mod-
els and more white-box approaches should be pursued (such
as decision trees). Furthermore, it would be interesting to
compare the resulting accuracy with black-box approaches.

In light of our analysis, we believe that our work opens up
new avenues for interesting further research works. Among
them, we will consider other multivariate (profiled and non-
profiled) attacks. Furthermore, experiments must be per-
formed on different public datasets of masking or hiding
implementations that will be available in the DPAContest
V4.More precisely, the DPAContest V4.2 will provide traces
collected on a software implementation of AES protected
with an improved masking scheme to thwart collision attack
as well as second-order CPA. On the other hand, the DPA-
Contest V4.3 will provide traces collected on a hardware
implementation of a masked AES where all the 16 Sboxes
are processed in parallel. Another interesting possible future
work concerns the scenario: “What would have been the
results in a not worst-case scenario where, for example, the
machine learning approach targets an information related
partially to themask values?” If such experiments confirm the
above results, then there are important implications. Strate-
gies based on template attack or stochastic attack against
countermeasures scheme may be shown to be less suitable
for security level estimation in the worst case scenario com-
pared to a machine learning approach.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES,
secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar,
C. (eds.) CHES. LNCS, vol. 2162, pp. 309–318. Springer, Berlin
(2001)

2. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based
on probabilistic multi-class support vector machines. In: Mangard,

S. (ed.) CARDIS. LNCS, vol. 7771, pp. 263–276. Springer, Berlin
(2012)

3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound

approaches to counteract power-analysis attacks. In: Wiener, M.J.
(ed.) CRYPTO. LNCS, vol. 1666, pp. 398–412. Springer, Berlin
(1999)

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES. LNCS, vol. 2523, pp. 13–28.
Springer, Berlin (2002)

6. Coron, J.-S.,Naccache,D.,Kocher, P.: Statistics and secret leakage.
ACM Trans. Embed. Comput. Syst. 3, 492–508 (2004)

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn.
20(3), 273–297 (1995)

8. Dash, M., Liu, H.: Feature selection for classification. Intell. Data
Anal. 1(1–4), 131–156 (1997)

9. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.:
e1071: Misc functions of the Department of Statistics (e1071), TU
Wien. R package version 1.6 (2011)

10. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side
channel attacks and leakagemodeling. J. Cryptogr. Eng. 1(2), 123–
144 (2011)

11. DPAContest V4. http://www.dpacontest.org/home/ (2014).
Accessed 1 Feb 2014

12. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to cer-
tify the leakage of a chip? In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT. LNCS, vol. 8441, pp. 459–476. Springer, Berlin
(2014)

13. Gonzalez Estrada, E., Villasenor Alva, J.A.: mvShapiroTest: gen-
eralized Shapiro–Wilk test for multivariate normality. R package
version 0.0.1 (2009)

14. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis:
concrete results. In: Koç, Ç.K., Naccache,D., Paar, C. (eds.) CHES.
LNCS, vol. 2162, pp. 251–261. Springer, Berlin (2001)

15. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information
analysis—a generic side-channel distinguisher. In: CHES. LNCS,
vol. 5154, pp. 426–442. Springer, Berlin (2008)

16. Gierlichs, B., Janussen, K.: Template attacks on masking: an inter-
pretation. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC
(2007)

17. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochas-
tic methods. In: Proceedings of the 8th International Conference
on Cryptographic Hardware and Embedded Systems. LNCS, vol.
4249, pp. 15–29. Springer, Berlin (2006)

18. Golic, J.Dj., Tymen, C.:Multiplicativemasking and power analysis
of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES.
LNCS, vol. 2523, pp. 198–212. Springer, Berlin (2002)

19. Hajra, S., Mukhopadhyay, D.: SNR to success rate: reaching the
limit of non-profiling DPA. Cryptology ePrint Archive, Report
2013/865 (2013). http://eprint.iacr.org/

20. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statis-
tical Learning: Data Mining, Inference and Prediction, 2nd edn.
Springer, Berlin (2009)

21. Heuser, A., Zohner, M.: Intelligent machine homicide—breaking
cryptographic devices using support vector machines. In: Proceed-
ings of the Third International Conference on Constructive Side-
Channel Analysis and Secure Design. LNCS, vol. 7275, pp. 249–
264. Springer, Berlin (2012)

22. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Van-
dewalle, J.: Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng. 1(4), 293–302 (2011)

23. Hospodar, G., Mulder, E.D., Gierlichs, B., Vandewalle, J., Ver-
bauwhede, I.: Least squares support vector machines for side-
channel analysis. In: Second International Workshop on Construc-
tive SideChannel Analysis and Secure Design, pp. 99–104. Center
for Advanced Security Research, Darmstadt (2011)

123

http://www.dpacontest.org/home/
http://eprint.iacr.org/

J Cryptogr Eng (2015) 5:123–139 139

24. Japkowicz, N., Stephen, S.: The class imbalance problem: a sys-
tematic study. Intell. Data Anal. J. 6(5), 429–449 (2002)

25. Kocher, P.C.: Timing attacks on implementations of Diffie–
Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.)
CRYPTO. LNCS, vol. 1109, pp. 104–113. Springer, Berlin (1996)

26. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In:
CRYPTO. LNCS, pp. 388–397. Springer, Berlin (1999)

27. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack:
an approach based on machine learning. In: Second Interna-
tionalWorkshop onConstructive SideChannelAnalysis andSecure
Design, pp. 29–41. Center for Advanced Security Research, Darm-
stadt (2011)

28. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack:
an approach based on machine learning. Int. J. Appl. Cryptogr.
3(2), 97–115 (2014)

29. Lerman, L., Bontempi, G., Ben Taieb, S., Markowitch, O.: A time
series approach for profiling attack. In: Gierlichs, B., Guilley, S.,
Mukhopadhyay, D. (eds.) SPACE. LNCS, vol. 8204, pp. 75–94.
Springer, Berlin (2013)

30. Lerman, L., Fernandes Medeiros, S., Bontempi, G., Markowitch,
O.: A machine learning approach against a masked AES. In: Fran-
cillon, A., Rohatgi, P. (eds.) International Conference on Smart
Card Research and Advanced Applications (CARDIS). LNCS.
Springer, Berlin (2013)

31. Liaw, A., Wiener, M.: Classification and regression by randomfor-
est. R News 2(3), 18–22 (2002)

32. Lomné, V., Prouff, E., Roche, T.: Behind the scene of side channel
attacks. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT. LNCS, vol.
8269, pp. 506–525. Springer, Berlin (2013)

33. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks—
Revealing the Secrets of Smart Cards. Springer, Berlin (2007)

34. Mardia, K.V.: Measures of multivariate skewness and kurtosis with
applications. Biometrika 57(3), 519–530 (1970)

35. Martinasek, Z., Zeman, V.: Innovative method of the power analy-
sis. Radioengineering 22(2), 586–594 (2013)

36. Messerges, T.S.: Securing the AES finalists against power analysis
attacks. In:Goos,G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.)
FSE. LNCS, vol. 1978, pp. 150–164. Springer, Berlin (2001)

37. Montminy, D.P., Baldwin, R.O., Temple, M.A., Laspe, E.D.:
Improving cross-device attacks using zero-mean unit-variance nor-
malization. J. Cryptogr. Eng. 3(2), 99–110 (2013)

38. Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages.
Cryptology ePrint Archive, Report 2013/842 (2013). http://eprint.
iacr.org/

39. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small
and fast countermeasure for AES, secure against 1st and 2nd-order
zero-offset SCAs. In: Rosenstiel, W., Thiele, L. (eds.) DATE, pp.
1173–1178. IEEE (2012)

40. Oswald, E., Mangard, S.: Template attacks on masking-resistance
is futile. In: Abe, M. (ed.) Topics in Cryptology—CT-RSA 2007.
LNCS, vol. 4377, pp. 243–256. Springer, Berlin (2006)

41. Pearson, K.: On lines and planes of closest fit to systems of points
in space. Philos. Mag. 2(6), 559–572 (1901)

42. Peng, H., Long, F., Ding, C.: Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–
1238 (2005)

43. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh,
H. (eds.) Fast Software Encryption. LNCS, vol. 3557, pp. 424–441.
Springer, Berlin (2005)

44. Rivain, M., Dottax, E., Prouff, E.: Block ciphers implementations
provably secure against second order side channel analysis. In:
Nyberg, K. (ed.) FSE. LNCS, vol. 5086, pp. 127–143. Springer,
Berlin (2008)

45. Schindler, W.: Advanced stochastic methods in side channel analy-
sis on block ciphers in the presence of masking. J. Math. Cryptol.
2(3), 291–310 (2008)

46. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differ-
ential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.)
CHES. LNCS, vol. 3659, pp. 30–46. Springer, Berlin (2005)

47. Standaert, F.-X., Archambeau, C.: Using subspace-based template
attacks to compare and combine power and electromagnetic infor-
mation leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES. LNCS,
vol. 5154, pp. 411–425. Springer, Berlin (2008)

48. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B.,
Medwed, M., Kasper, M., Mangard, S.: The world is not enough:
another look on second-orderDPA. In: Abe,M. (ed.) ASIACRYPT.
LNCS, vol. 6477, pp. 112–129. Springer, Berlin (2010)

49. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack
using multivariate regression analysis. IEICE Electron. Express
7(15), 1139–1144 (2010)

50. von Willich, M.: A technique with an information-theoretic basis
for protecting secret data from differential power attacks. In:
Honary, B. (ed.) IMA International Conference. LNCS, vol. 2260,
pp. 44–62. Springer, Berlin (2001)

51. Whitnall, C., Oswald, E.: Profiling DPA: efficacy and efficiency
trade-offs. In: Bertoni, G., Coron, J.-S. (eds.) CHES. LNCS, vol.
8086, pp. 37–54. Springer, Berlin (2013)

52. Whitnall, C., Oswald, E., Mather, L.: An exploration of the
Kolmogorov–Smirnov test as a competitor to mutual information
analysis. In: Prouff, E. (ed.) CARDIS. LNCS, vol. 7079, pp. 234–
251. Springer, Berlin (2011)

123

http://eprint.iacr.org/
http://eprint.iacr.org/

	A machine learning approach against a masked AES
	Reaching the limit of side-channel attacks with a learning model
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Side-channel attacks
	2.1.1 Non-profiled attacks
	2.1.2 Profiled attacks

	2.2 Masking countermeasure
	2.3 Strategies against countermeasures

	3 Machine learning approach against masking countermeasure
	4 Experiments and discussion
	4.1 Target implementation
	4.2 Experimental results
	4.2.1 Finding the offset value on traces
	4.2.2 Model selection
	4.2.3 Key recovery step
	4.2.4 Attacking step with a multivariate key recovery step

	4.3 Discussions

	5 Conclusion and perspectives
	References

